首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Ultrasound/microbubble-mediated gene delivery has the potential to be targeted to tissue deep in the body by directing the ultrasound beam following vector administration. Application of this technology would be minimally invasive and benefit from the widespread clinical experience of using ultrasound and microbubble contrast agents. In this study we evaluate the targeting ability and spatial distribution of gene delivery using focused ultrasound. METHODS: Using a custom-built exposure tank, Chinese hamster ovary cells in the presence of SonoVue microbubbles and plasmid encoding beta-galactosidase were exposed to ultrasound in the focal plane of a 1 MHz transducer. Gene delivery and cell viability were subsequently assessed. Characterisation of the acoustic field and high-resolution spatial analysis of transfection were used to examine the relationship between gene delivery efficiency and acoustic pressure. RESULTS: In contrast to that seen in the homogeneous field close to the transducer face, gene delivery in the focal plane was concentrated on the ultrasound beam axis. Above a minimum peak-to-peak value of 0.1 MPa, transfection efficiency increased as acoustic pressure increased towards the focus, reaching a maximum above 1 MPa. Delivery was microbubble-dependent and cell viability was maintained. CONCLUSIONS: Gene delivery can be targeted using focused ultrasound and microbubbles. Since delivery is dependent on acoustic pressure, the degree of targeting can be determined by appropriate transducer design to modify the ultrasound field. In contrast to other physical gene delivery approaches, the non-invasive targeting ability of ultrasound makes this technology an attractive option for clinical gene therapy.  相似文献   

2.
Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.  相似文献   

3.
We have evaluated if ultrasound imaging (US) and various commercially available contrast microbubbles can serve as a non-invasive systemically administered delivery vehicle for site-specific adenoviral-mediated gene transfer in vitro and in vivo. The contrast agents were tested for their ability to enclose and to protect an adenoviral vector carrying the GFP marker gene (Ad-GFP) into the microbubbles. We have also evaluated the ability of the innate immune system to inactivate free adenoviruses as well as unenclosed viruses adsorbed on the surface of the contrast agents and in turn the ability of the microbubbles to enclose and to protect the viral vectors from such agents. In vitro as well as in vivo, innate components of the immune system were able to serve as inactivating agents to clear free viral particles and unenclosed adenoviruses adsorbed on the microbubbles' surface. Systemic delivery of Ad-GFP enclosed into microbubbles in the tail vein of nude mice resulted in specific targeting of the GFP transgene. Both fluorescence microscopy and GFP immunohistochemistry demonstrated US guided specific transduction in the targeted cells only, with no uptake in either heart, lungs or liver using complement-pretreated Ad-GFP microbubbles. This approach enhances target specificity of US microbubble destruction as a delivery vehicle for viral-mediated gene transfer.  相似文献   

4.
Development of methods to engineer gamma-retroviral vectors capable of transducing target cells in a cell-specific manner could impact the future of the clinical application of gene therapy as well as the understanding of the biology of transfer gene vectors. Two molecular events are critical for controlling the entry of gamma-retroviral vectors to target cells: binding to cell-surface receptors and the subsequent fusion of viral vector membrane and cellular membrane. In this report, we evaluated a method to incorporate a membrane-bound antibody and a fusogenic molecule to provide binding and fusion functions respectively, into gamma-retroviral vectors for targeted gene delivery. An anti-CD20 antibody and a fusogenic protein derived from Sindbis virus glycoprotein could be efficiently co-displayed on the surface of viral vectors. Vectors bearing anti-CD20 antibody conferred their binding specificity to cells expressing CD20. Enhanced in vitro transduction towards CD20-expressing cells was observed for gamma-retroviral vectors displaying both an antibody and a fusogen. We found that the biological activity of the fusogen played an important role on the efficiency of such a targeting strategy and were able to engineer several mutant forms of the fusogen exhibiting elevated fusion function to improve the overall efficiency of targeted transduction. We devised an animal model to show that subcutaneous injection of such engineered vectors to the areas xenografted with target cells could achieve targeted gene delivery in vivo. Taken together, we demonstrated as proof-of-principle a flexible and modular two-molecule strategy for engineering targeting gamma-retroviral vectors.  相似文献   

5.
BACKGROUND: Although some cationic reagents, such as polybrene, improve gene transduction in vitro, their use in vivo is prohibited due to their toxicity to the exposed cells. This paper demonstrates that a new cationic reagent, poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLL), improves gene transduction with retroviral vectors without increasing cell toxicity. METHODS: A retroviral vector derived from the Moloney leukemia virus, containing the lacZ gene, was modified with PEG-PLL prior to transduction into NIH3T3, Lewis lung carcinoma, and primary cultured mouse brain cells. LacZ transduction efficacy was evaluated by counting the number of X-Gal-positive cells. RESULTS: We have demonstrated that PEG-PLL is able to stably modify the viral particle surface due to the affinity of the PEG moiety to the biomembrane, and neutralizes negative charges by the cationic nature of the poly-lysine residue. Thus, PEG-PLL increased the gene transduction efficiency and minimized cell toxicity because free PEG-PLL was removable by centrifugation. We have shown that PEG-PLL increased the viral gene transduction efficiency 3- to 7-fold with NIH3T3 or Lewis lung carcinoma cell lines without increasing cytotoxicity. It improved retroviral gene transduction efficacy even against labile cells, such as primary cultured brain cells. CONCLUSIONS: PEG-PLL is a novel reagent that improves retroviral gene transduction efficacy without increasing cytotoxicity.  相似文献   

6.
7.
肿瘤基因治疗的靶向策略   总被引:8,自引:2,他引:8  
对肿瘤组织的靶向性可以提高基因治疗的效果 ,避免对正常组织的损伤 ,并且能降低作为载体的微生物对机体的危害。对于瘤内注射的给药方法 ,靶向性似乎显得不是特别重要 ,但是如果要系统给药 ,靶向性是很关键的一个问题。靶向基因治疗肿瘤可以通过靶向基因导入和靶向基因表达来实现。近年来 ,在靶向基因导入方面的研究有很多进展 ,例如 ,用双亲性的桥连分子协助腺病毒和逆转录病毒靶向转导 ;在各种病毒载体的衣壳蛋白中插入靶向性的小肽或较大的多肽靶向结构域 ;增殖病毒作为一种很有前途的抗肿瘤制剂可有效地靶向杀伤肿瘤细胞。受体介导的DNA或DNA 脂质体复合物的靶向系统和其他一些靶向性的有疗效的载体 ,如细菌 ,也处于研究中。其中的一些载体已经进入临床实验。为了实现基因的靶向可调控表达 ,组织或肿瘤特异性的启动子和人工合成的可调控表达系统被用来调控治疗基因的表达。反义核酸、核酶以及脱氧核酶 (DNAzyme)被用来靶向抑制与肿瘤发生密切相关基因的表达。  相似文献   

8.
Replication-incompetent recombinant retroviruses are currently used for gene delivery. The limited efficiency of gene transfer using these vectors hampers implementation of gene therapy. Successful integration of Moloney murine leukemia virus (MMuLV)-derived retroviral vectors into the host cell DNA requires cell division. The time difference between virus entry and cell division is variable and prolonged in slowly dividing cells. Therefore, the rate of intracellular decay of internalized vectors between the time of entry into the target cell and cell division may limit the probability of successful integration following viral entry. We present two methods that measure the intracellular stability of MMuLV-derived retroviral vectors in NIH 3T3 cells. The first is based on a temporary interruption of cell cycle progression by using cell detachment. This method provides an estimate, but not a direct measurement, of the half-life. The results show that the MMuLV intracellular half-life is on the order of but shorter than the total cell cycle time. The second method allows the direct measurement of the intracellular half-life by using two cell cycle-specific labels: 5-bromodeoxyuridine, a thymidine analog that labels cells in S-phase; and the viral vector that labels cells in mitosis. By varying the time between the administration of the two labels, the intracellular half-life is measured to be in the range of 5.5 to 7.5 h. Such a short intracellular half-life may restrict the efficiency of gene transfer by retroviral vectors, particularly in slowly dividing target cells.  相似文献   

9.
The inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches that improve gene transfer efficiency have been described, but suffer from a number of limitations. Herein, a fiber-modified adenovirus, carrying the small peptide ligand on the capsid, was tested for the delivery of a transgene to cancer cells. The fiber-modified adenovirus was able to mediate the entry and expression of a beta-galactosidase into cancer cells with increased efficiency compared to the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to transferrin receptor overexpressing cancer cells, and could be used for future cancer gene therapy.  相似文献   

10.
Currently, amphotropic retroviral vectors are widely used for gene transfer into CD34+ hematopoietic progenitor cells. The relatively low levels of transduction efficiency associated with these vectors in human cells is due to low viral titers and limitations in concentrating the virus because of the inherent fragility of retroviral envelopes. Here we show that a human immunodeficiency virus type 1 (HIV-1)-based retroviral vector containing the firefly luciferase reporter gene can be pseudotyped with a broad-host-range vesicular stomatitis virus envelope glycoprotein G (VSV-G). Higher-efficiency gene transfer into CD34+ cells was achieved with a VSV-G-pseudotyped HIV-1 vector than with a vector packaged in an amphotropic envelope. Concentration of virus without loss of viral infectivity permitted a higher multiplicity of infection, with a consequent higher efficiency of gene transfer, reaching 2.8 copies per cell. These vectors also showed remarkable stability during storage at 4 degrees C for a week. In addition, there was no significant loss of titer after freezing and thawing of the stock virus. The ability of VSV-G-pseudotyped retroviral vectors to achieve a severalfold increase in levels of transduction into CD34+ cells will allow high-efficiency gene transfer into hematopoietic progenitor cells for gene therapy purposes. Furthermore, since it has now become possible to infect CD34+ cells with pseudotyped HIV-1 with a high level of efficiency in vitro, many important questions regarding the effect of HIV-1 on lineage-specific differentiation of hematopoietic progenitors can now be addressed.  相似文献   

11.
Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 10(6) transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins.  相似文献   

12.
The goal of this study was to determine whether ultrasound (US) exposure combined with microbubble destruction could be used to enhance non-viral gene delivery in rat C6 glioma cells. Microbubbles were prepared and gently mixed with plasmid DNA. The mixture of the DNA and microbubbles was administered to cultured C6 cells under different US/microbubble conditions. Transfection efficiency and cell viability were assessed by FACS analysis, confocal laser scanning microscopy, and Trypan blue staining. The results demonstrate that microbubble with US exposure could significantly enhance the reporter gene expression as compared with other groups. No statistical significant difference was observed in the glioma cell viability between different groups. Our in vitro findings suggest that US-mediated microbubble destruction has the potential to promote safe and efficient gene transfer into C6 cells. This non-invasive gene transfer method may be useful for safe clinical gene therapy of brain cancer without a viral vector system.  相似文献   

13.
Designing gene delivery vectors for cardiovascular gene therapy   总被引:3,自引:0,他引:3  
Genetic therapy in the cardiovascular system has been proposed for a variety of diseases ranging from prevention of vein graft failure to hypertension. Such diversity in pathogenesis requires the delivery of therapeutic genes to diverse cell types in vivo for varying lengths of time if efficient clinical therapies are to be developed. Data from extensive preclinical studies have been compiled and a certain areas have seen translation into large-scale clinical trials, with some encouraging reports. It is clear that progress within a number of disease areas is limited by a lack of suitable gene delivery vector systems through which to deliver therapeutic genes to the target site in an efficient, non-toxic manner. In general, currently available systems, including non-viral systems and viral vectors such as adenovirus (Ad) or adeno-associated virus (AAV), have a propensity to transduce non-vascular tissue with greater ease than vascular cells thereby limiting their application in cardiovascular disease. This problem has led to the development and testing of improved vector systems for cardiovascular gene delivery. Traditional viral and non-viral systems are being engineered to increase their efficiency of vascular cell transduction and diminish their affinity for other cell types through manipulation of vector:cell binding and the use of cell-selective promoters. It is envisaged that future use of such technology will substantially increase the efficacy of cardiovascular gene therapy.  相似文献   

14.
Human stem and progenitor cells have recently become objects of intensive studies as an important target for gene therapy and regenerative medicine. Retroviral vectors are among the most effective tools for genetic modification of these cells. However, their transduction efficiency strongly depends on the choice of the ex vivo transduction system. The aim of this study was to elaborate a system for retroviral vector transduction of human CD34 positive cells isolated from cord blood. The retroviral vector pMINV EGFP was chosen for transduction of two human erythroblastoid cell lines: KG-1a (CD34 positive) and K562 (CD34 negative). For vector construction, three promoters and two retroviral vector packaging cell lines were used. To optimize the physicochemical conditions of the transduction process, different temperatures of supernatant harvesting, the influence of centrifugation and the presence of transduction enhancing agents were tested. The conditions elaborated with KG-1a cells were further applied for transduction of CD34 positive cells isolated from cord blood. The optimal efficiency of transduction of CD34 positive cells with pMINV EGFP retroviral vector (26% of EGFP positive cells), was obtained using infective vector with LTR retroviral promoter, produced by TE FLY GA MINV EGFP packaging cell line. The transduction was performed in the presence of serum, at 37 degrees C, with co-centrifugation of cells with viral supernatants and the use of transduction enhancing agents. This study confirmed that for gene transfer into CD34 positive cells, the detailed optimization of each element of the transduction process is of great importance.  相似文献   

15.
BACKGROUND: Genetically modified keratinocytes generate transplantable self-renewing epithelia suitable for delivery of therapeutic polypeptides. However, the variety of viral vectors and experimental conditions currently used make fragmented or contradictory the information on the transduction efficiency of the human primary keratinocytes. To compare the suitability of the most currently used viral vectors for efficient gene transfer to human keratinocytes, we have performed a comparative study using a panel of recombinant constructs. METHODS: For each vector, the transduction efficiency and the persistence of the transgene expression were quantified by fluorescence microscopy and flow cytometry analysis of the infected cells. RESULTS: We show that: (1) canine and human adenoviral vectors achieve a highly efficient but transient transduction of both primary and immortalized keratinocytes; (2) the adenovirus-associated virus (AAV) vectors transduce immortalized keratinocytes, albeit with a short-lived gene expression (<4 days), but fail to infect primary keratinocytes; and (3) under appropriate conditions, the oncoretroviral and lentiviral vectors can permanently transduce up to 100% of primary keratinocytes, but the highly clonogenic keratinocytes are more efficiently targeted by lentiviral vectors. CONCLUSIONS: Therefore, AAV vectors are unsuitable to transduce primary keratinocytes, while human and canine adenoviral vectors appears to be appropriate to achieve short-term delivery of therapeutic products. Recombinant retroviruses provide sustained expression of the transgene, but the lentiviral vectors are the most suitable for ex vivo gene therapy because of their ability to transduce clonogenic primary keratinocytes.  相似文献   

16.
Murine leukemia virus (MLV)-based retroviral vectors are the most frequently used gene delivery vehicles. However, the current vectors are still not fully optimized for gene expression and viral titer, and many genetic and biochemical features of MLV-based vectors are poorly understood. We have previously reported that the retroviral vector MFG, where the gene of interest is expressed as a spliced mRNA, is superior in the level of gene expression with respect to other vectors compared in the study. As one approach to developing improved retroviral vectors, we have systematically performed mutational analysis of the MFG retroviral vector. We demonstrated that the entire gag coding sequence, together with the immediate upstream region, could be deleted without significantly affecting viral packaging or gene expression. To our knowledge, this region is included in all currently available retroviral vectors. In addition, almost the entire U3 region could be replaced with the heterologous human cytomegalovirus immediately-early promoter without deleterious effects. We could also insert internal ribosome entry sites (IRES) and multicloning sites into MFG without adverse effects. Based on these observations, we have constructed a series of new, improved retroviral constructs. These vectors produced viral titers comparable to MFG, expressed high levels of gene expression, and stably transferred genes to the target cells. Our vectors are more convenient to use because of the presence of multicloning sites and IRESs, and they are also more versatile because they can be readily converted to various applications. Our results have general implications regarding the design and development of improved retroviral vectors for gene therapy.  相似文献   

17.
Successful gene therapy largely depends on the selective introduction of therapeutic genes into the appropriate target cancer cells. One of the most effective and promising approaches for targeting tumor tissue during gene delivery is the use of viral vectors, which allow for high efficiency gene delivery. However, the use of viral vectors is not without risks and safety concerns, such as toxicities, a host immune response towards the viral antigens or potential viral recombination into the host''s chromosome; these risks limit the clinical application of viral vectors. The Sleeping Beauty (SB) transposon-based system is an attractive, non-viral alternative to viral delivery systems. SB may be less immunogenic than the viral vector system due to its lack of viral sequences. The SB-based gene delivery system can stably integrate into the host cell genome to produce the therapeutic gene product over the lifetime of a cell. However, when compared to viral vectors, the non-viral SB-based gene delivery system still has limited therapeutic efficacy due to the lack of long-lasting gene expression potential and tumor cell specific gene transfer ability. These limitations could be overcome by modifying the SB system through the introduction of the hTERT promoter and the SV40 enhancer. In this study, a modified SB delivery system, under control of the hTERT promoter in conjunction with the SV40 enhancer, was able to successfully transfer the suicide gene (HSV-TK) into multiple types of cancer cells. The modified SB transfected cancer cells exhibited a significantly increased cancer cell specific death rate. These data suggest that our modified SB-based gene delivery system can be used as a safe and efficient tool for cancer cell specific therapeutic gene transfer and stable long-term expression.  相似文献   

18.
Recombinant retroviral vectors are still the most common gene delivery vehicles for gene therapy purposes, especially for construction of genetically modified tumor vaccines (GMTV). However, these vehicles are characterized by relatively low titre and in the case of many tumor cell lines, low transduction efficiency. We constructed bicistronic retroviral vector pseudotypes of amphotropic murine leukemia virus (A-MuLV) and gibbon ape leukemia virus (GaLV), encoding enhanced green fluorescent protein (EGFP) as a rapid and easily detectable reporter gene. Transduction of five different human melanoma and four renal carcinoma cell lines by these two virus pseudotypes revealed differences in transduction efficiency, which wase markedly lower for the renal carcinoma cell lines. Stimulation of retroviral receptor expression (PiT1 and PiT2) by phosphate depletion induced a limited increase of receptor mRNA levels, but did not improve the gene transfer efficiency. In contrast, simultaneous transduction with both vector pseudotypes markedly increased the transduction efficiency, compared to GaLV or A-MuLV alone. The same effect could be achieved by several repeated exposures of target cells to fresh vector preparation. Overexpression of GaLV receptor (PiT1) in target cells significantly increased the transduction rate and enabled retrovirus mediated gene transfer into the cells which normally are not transducible by GaLV pseudotypes. We demonstrated that, using different transduction strategies, the relatively inefficient, widely used retroviral vector systems could be significantly improved.  相似文献   

19.
20.
One of the greatest challenges to gene therapy is the targetting of gene delivery selectively to the sites of disease and regulation of transgene expression without adverse effects. Ultimately, the successful realization of these goals is dependent upon improvements in vector design. Over the years, viral vector design has progressed from various types of replication-defective viral mutants to replication-conditioned viruses and, more recently, to 'gutted' and hybrid vectors, which have, respectively, eliminated expression of non-relevant or toxic viral genes and incorporated desired elements of different viruses so as to increase the efficacy of gene delivery in vivo. This review will focus on the different viral and cellular elements which have been incorporated into virus vectors to: improve transduction efficiencies; alter the entry specificity of virions; control the fate of transgenes in the host cells; and regulate transgene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号