首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 122 毫秒
1.
数量性状的遗传分析可以通过"选择基因型"的方式完成。本文提出了一个利用极端样本来对数量性状位点(QTL)进行关联分析的统计量T。统计量T比较上极端群体样本中具有纯合子标记的性状值差异。通过计算机模拟考察了无关联情形时T的分布和Ⅰ型错误率,结果表明,在各种样本选择策略下,T的分布近似于χ^2-分布,Ⅰ型错误率接近设定的显著性水平。同时,考察了各种遗传模型下不同遗传率,不同样本大小,及不同样本选择阈值对T的统计功效的影响,结果表明,T的功效随着标记和QTL间连锁不平衡程度的增强及遗传率和样本大小的增大而增大,当样本选择阈值更严格时,功效也越大。  相似文献   

2.
基于基因型选择提高QTL作图的精度——以一个RIL群体为例   总被引:4,自引:0,他引:4  
以PCR为基础的分子标记以及其他检测技术的发展,使得大规模的标记分析成为现实。这也为通过大群体标记分析,然后基于基因型选择挑选合适的小群体,从而提高QTL定位准确性和精度提供了可能。以一个包含294个家系的重组自交系(RIL)群体为例,通过基因型选择和随机选择的办法产生了一系列大小不等的亚群体,比较了两类群体QTL定位的结果。分析表明:相同大小的基因型选择群体与随机群体相比性状的表型分布都符合正态分布;标记的偏分离情况也没有明显的差别,都随着群体大小的增大,偏分离的比例也逐渐增大。但同等大小的基因型选择群体比随机群体的交换富集率(CE)要大,且随着选择强度的增大不断增大,如群体大小为270时,CE=1.04,群体大小为30时,CE=1.45。总体上,随着群体大小的增加,不管是随机群体还是选择群体,其QTL检测能力、灵敏性和特异性也随之增加,但选择群体的检测能力、灵敏性和特异性总体上要好于随机群体。当群体大于或等于240时,其QTL检测能力基本没有差别;群体大小大于或等于210时,其QTL检测的灵敏性和特异性也没有什么差别。这也说明:选择强度越大,效果越明显。以QTLI—LOD区间作为衡量QTL精度的一个指标,结果显示所有基因型选择群体都比相同大小随机群体的QTL定位精度高。目前QTL定位研究中,基因型数据较表型数据而言更容易准确获得,因此通过基因型选择可以更好的优化群体结构,减少田间实验的工作量,提高全基因组水平QTL作图的精度,为随后的QTL辅助选择和精细定位以及克隆提供帮助。  相似文献   

3.
水稻双单倍体群体的分子标记图示基因型分析   总被引:2,自引:2,他引:0  
徐吉臣  徐云碧 《遗传学报》1995,22(5):343-352
利用窄叶青8号(籼稻)/京系17(粳稻)花培产生的双单倍体群体建立了一个包含160个分子标记的遗传连锁图,在此基础上利用HYPERGENE软件建立了52个DH系的图示基因型,并对DH系的亲本基因组比率和染色体的交换重组频率进行了比较分析。结果表明本实验所用的DH群体没有显著偏离正态分布,籼粳稻杂交后代中植株的籼粳表现与同工酶、形态指数和基因组比率的分析结果一致,此外还发现DH群体中出现了大量的交换罕见染色体。利用图示基因型分析发现株高和分子标记RZ978和RG4A相关,生育期和RRK08-1、RG477和RG511相关。本文还就图示基因型分析技术在DH群体的遗传分析和选择育种中的应用进行了讨论.  相似文献   

4.
林飞  万素琴  程利国  吕海燕  李广军  章元明 《遗传》2006,28(11):1407-1410
在数量性状QTL的精细定位中, 通过数量性状目标QTL的近等基因系可构建分离群体。在目标QTL效应较大的情况下, 数量性状表型值可反映目标QTL的基因型。若目标QTL附近的标记密度大时, 大样本才能定位该QTL。但是, 这增加了试验费用。为节约试验经费, 若只利用QTL纯合隐性基因型植株的分子标记信息, 也可比较准确地定位该QTL。利用极大似然法, 分别推导出F2、BC、DH以及RIL群体中重组率及其标准误的估计公式。Monte Carlo模拟研究表明, 基于定位群体中全部数据或隐性纯合基因型数据所获得的重组率估计值是一致的, 且在相同样本容量条件下, 二者精度相当。  相似文献   

5.
提出了一种基于分子标记数据及数量性状基因型值构建作物种质资源核心种质库的方法.采用包括基因型与环境互作的遗传模型及相应的混合线性模型统计分析方法,无偏预测各材料的基因型值,分别用基因型值和分子标记数据计算个体间的相似系数,加权得到最终的相似距离.采用不加权类平均法(UPGMA)进行系统聚类,用多次聚类随机取样法构建核心种质库.以水稻DH群体111个基因型8个农艺性状、175个分子标记位点的数据为实例,按四种抽样比率(25%,20%,15%,10%)构建了四个核心种质库,比较了核心种质库与整个群体的分子标记多样性及数量性状的遗传变异,评价了所用方法的有效性。  相似文献   

6.
与偏分离位点连锁的QTL作图的统计方法   总被引:2,自引:0,他引:2  
提出了一种统计方法,可以估计与偏分离位点连锁的QTL的位置和效应。该方法利用回交群体中呈现偏分离的分子标记,首先用最大似然法对偏分离位点与标记位点之间的重组率和配子存活率进行估计,然后用区间作图法估计加性-显性模型下QTL的位置和效应参数。该方法可用于对常规作图研究中表现偏分离的标记进行分析,以帮助我们发现新的偏分离基因(或不育基因)和数量性状位点。  相似文献   

7.
DNA分子标记信息不完全的统计处理   总被引:2,自引:0,他引:2  
显性分子标记提供的有关该标记基因型的遗传信息是不完全的 ,缺失标记则丧失了它本来可能提供的遗传信息 .根据遗传学和统计学的一些基本原理 ,导出了一种通用算法 ,可以在F2 代群体中系统地恢复基因组上所有显性和缺失标记的基因型信息 ,从而增进构建数量性状基因图和标记辅助选择等工作的效率和精度 .这一方法也可方便地推广应用于一个标记具有 3种基因型的各类群体 ,例如由F2 自交衍生的高世代群体和随交群体等  相似文献   

8.
引入贝叶斯理论用以从DNA分子标记的表现型(电泳谱带)推断其基因型(DNA来源)。结果表明,根据标记座位独立贫富而确定的遗传信息不完全标记的基因型概率,与根据邻近的遗传信息完全标记的基因型和有关重组率算得的相应贝叶斯概率,通常都有很大的差异,所以在进行数量性状基因定位和标记辅助选择等工作前前,应当计算每一个体基因组上所有遗传信息不完全座位的有关基因型的贝叶斯概率,文中列出计算未知基因型的贝叶斯概率的详细过程,也讨论了贝叶斯概率的若干推广应用。  相似文献   

9.
基于F3种子的胚乳性状QTL区间定位   总被引:1,自引:0,他引:1  
温永仙  吴为人 《遗传学报》2007,34(5):429-436
文章提出了包括胚乳效应和母体效应的胚乳性状QTL定位的统计方法,该方法的实验设计是分子标记基因型信息来自F2母体植株和F3种子胚(或植株),胚乳性状表型值来自F3单粒种子胚乳,称之为两步等级设计。同时,用计算机全面模拟以验证该模型的可行性,模拟结果表明,只要群体足够大,该模型能较有效地进行胚乳性状QTL定位并精确地估计出胚乳QTL的各种遗传效应和母体效应。  相似文献   

10.
不同QTL增效基因初始频率下标记辅助选择的效果   总被引:1,自引:0,他引:1  
采用随机模拟方法模拟了在一个闭锁群体内连续对单个性状选择10个世代的情形。在假定选择性状受一个位于常染色体上的QTL和多基因共同控制的情况下,采用动物模型标记辅助最佳线性无偏预测方法估计个体育种值并据此进行种畜的选留,并在此基础上系统地比较了QTL增效基因初始频率对标记辅助选择效果的影响。结果表明:当群体中QTL增效基因的初始频率较低时,选择所获得的QTL基因型值的进展会更大,标记辅助选择在单位时间内可获得较大的遗传进展;此时,尽管QTL增效基因在群体中固定所需的世代数会更长一些,但其频率上升的速度却更快。而QTL增效基因初始频率的高低对群体近交增量的影响不是很大。  相似文献   

11.
Dominant phenotype of a genetic marker provides incomplete information about the marker genotype of an individual. A consequence of using this incomplete information for mapping quantitative trait loci (QTL) is that the inference of the genotype of a putative QTL flanked by a marker with dominant phenotype will depend on the genotype or phenotype of the next marker. This dependence can be extended further until a marker genotype is fully observed. A general algorithm is derived to calculate the probability distribution of the genotype of a putative QTL at a given genomic position, conditional on all observed marker phenotypes in the region with dominant and missing marker information for an individual. The algorithm is implemented for various populations stemming from two inbred lines in the context of mapping QTL. Simulation results show that if only a proportion of markers contain missing or dominant phenotypes, QTL mapping can be almost as efficient as if there were no missing information in the data. The efficiency of the analysis, however, may decrease substantially when a very large proportion of markers contain missing or dominant phenotypes and a genetic map has to be reconstructed first on the same data as well. So it is important to combine dominant markers with codominant markers in a QTL mapping study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In order to reveal quantitative trait loci (QTL) interactions and the relationship between various interactions in complex traits, we have developed a new QTL mapping approach, named genotype matrix mapping (GMM), which searches for QTL interactions in genetic variation. The central approach in GMM is the following. (1) Each tested marker is given a virtual matrix, named a genotype matrix (GM), containing intersecting lines and rows equal to the total allele number for that marker in the population analyzed. (2) QTL interactions are then estimated and compared through virtual networks among the GMs. To evaluate the contribution of marker combinations to a quantitative phenotype, the GMM method divides the samples into two non-overlapping subclasses, S(0) and S(1); the former contains the samples that have a specific genotype pattern to be evaluated, and the latter contains samples that do not. Based on this division, the F-measure is calculated as an index of significance. With the GMM method, we extracted significant marker combinations consisting of one to three interacting markers. The results indicated there were multiple QTL interactions affecting the phenotype (flowering date). GMM will be a valuable approach to identify QTL interactions in genetic variation of a complex trait within a variety of organisms.  相似文献   

13.
The coefficient of relationship is defined as the correlation between the additive genetic values of two individuals. This coefficient can be defined specifically for a single quantitative trait locus (QTL) and may deviate considerably from the overall expectation if it is taken conditional on information from linked marker loci. Conditional halfsib correlations are derived under a simple genetic model with a biallelic QTL linked to a biallelic marker locus. The conditional relationship coefficients are shown to depend on the recombination rate between the marker and the QTL and the population frequency of the marker alleles, but not on parameters of the QTL, i.e. number and frequency of QTL alleles, degree of dominance etc., nor on the (usually unknown) QTL genotype of the sire. Extensions to less simplified cases (multiple alleles at the marker locus and the QTL, two marker loci flanking the QTL) are given. For arbitrary pedigrees, conditional relationship coefficients can also be derived from the conditional gametic covariance matrix suggested by Fernando and Grossman (1989). The connection of these two approaches is discussed. The conditional relationship coefficient can be used for marker-assisted genetic evaluation as well as for the detection of QTL and the estimation of their effects.  相似文献   

14.
Interval mapping of quantitative trait loci in autotetraploid species.   总被引:4,自引:0,他引:4  
C A Hackett  J E Bradshaw  J W McNicol 《Genetics》2001,159(4):1819-1832
This article presents a method for QTL interval mapping in autotetraploid species for a full-sib family derived by crossing two parents. For each offspring, the marker information on each chromosome is used to identify possible configurations of chromosomes inherited from the two parents and the locations of crossovers on these chromosomes. A branch and bound algorithm is used to identify configurations with the minimum number of crossovers. From these configurations, the conditional probability of each possible QTL genotype for a series of positions along the chromosome can be estimated. An iterative weighted regression is then used to relate the trait values to the QTL genotype probabilities. A simulation study is performed to assess this approach and to investigate the effects of the proportion of codominant to dominant markers, the heritability, and the population size. We conclude that the method successfully locates QTL and estimates their parameters accurately, and we discuss different modes of action of the QTL that may be modeled.  相似文献   

15.
Mayer M 《Genetical research》2004,84(3):145-152
As an alternative to multiple-interval mapping a two-step moment method was recently proposed to map linked multiple quantitative trait loci (QTLs). The advantage of this moment method was supposed to be its simplicity and computational efficiency, especially in detecting closely linked QTLs within a marker bracket, but also in mapping QTLs in different marker intervals. Using simulations it is shown that the two-step moment method may give poor results compared with multiple-interval mapping, irrespective of whether the QTLs are in the same or in different marker intervals, especially if linked QTLs are in repulsion. The criteria of comparison are number of identified QTLs, likelihood ratio test statistics, means and empirical standard errors of the QTL position and QTL effects estimates, and the accuracy of the residual variance estimates. Further, the joint conditional probabilities of QTL genotypes for two putative QTLs within a marker interval were derived and compared with the unmodified approach ignoring the non-independence of the conditional probabilities.  相似文献   

16.
Fan R  Jung J 《Human heredity》2002,54(3):132-150
In this paper, we extend association study methods of both Fan et al. [Hum Hered 2002;53:130-145], in which a quantitative trait locus (QTL) and a multi-allele marker are considered for trio families, and Fan and Xiong [Biostatistics 2003, in press], in which a QTL and a bi-allelic marker are considered for nuclear families. The objective is to build mixed models for association study between a QTL and a multi-allelic marker for nuclear families with any number of offspring. Two types of nuclear family data are considered: the first is genetic data of offspring from at least one heterozygous parents, and the second is genetic data of offspring of nuclear family. (1) For the data of offspring from at least one heterozygous parents, we assume that at least one parent is heterozygous at the marker locus, and we may infer clearly the transmission of parental marker alleles to the offspring. We show that it can be used in association study in the presence of linkage. The theoretical basis is the difference between the conditional mean of trait value given an allele is transmitted and the conditional mean of trait value given the allele is not transmitted from a heterozygous parent. To build valid models, we calculate the variance covariance structure of trait values of offspring. Besides, the reduction of the number of parameters is discussed under an assumption of tight linkage between the trait locus and the marker. (2) For the data of offspring of nuclear family, we show that it can be used in general association study. In this case, the theoretical basis is the difference between the conditional mean of trait values given an allele is transmitted from a parent and the population mean. Then, we calculate variance-covariance structure of trait values of offspring. (3) Based on the theoretical analysis, mixed models are built for each type of the data, and related test statistics are proposed for association study. By power calculation and comparison, we show that, in some instances, the proposed test statistics have higher power than that by collapsing alleles to be new ones. The proposed models are used to analyze chromosomes 4 and chromosome 16 data of the Oxford asthma data, Genetic Analysis Workshop 12.  相似文献   

17.
Fan R  Jung J  Jin L 《Genetics》2006,172(1):663-686
In this article, population-based regression models are proposed for high-resolution linkage disequilibrium mapping of quantitative trait loci (QTL). Two regression models, the "genotype effect model" and the "additive effect model," are proposed to model the association between the markers and the trait locus. The marker can be either diallelic or multiallelic. If only one marker is used, the method is similar to a classical setting by Nielsen and Weir, and the additive effect model is equivalent to the haplotype trend regression (HTR) method by Zaykin et al. If two/multiple marker data with phase ambiguity are used in the analysis, the proposed models can be used to analyze the data directly. By analytical formulas, we show that the genotype effect model can be used to model the additive and dominance effects simultaneously; the additive effect model takes care of the additive effect only. On the basis of the two models, F-test statistics are proposed to test association between the QTL and markers. By a simulation study, we show that the two models have reasonable type I error rates for a data set of moderate sample size. The noncentrality parameter approximations of F-test statistics are derived to make power calculation and comparison. By a simulation study, it is found that the noncentrality parameter approximations of F-test statistics work very well. Using the noncentrality parameter approximations, we compare the power of the two models with that of the HTR. In addition, a simulation study is performed to make a comparison on the basis of the haplotype frequencies of 10 SNPs of angiotensin-1 converting enzyme (ACE) genes.  相似文献   

18.
 Trait means of marker genotypes are often inconsistent across experiments, thereby hindering the use of regression techniques in marker-assisted selection. Best linear unbiased prediction based on trait and marker data (TM-BLUP) does not require prior information on the mean effects associated with specific marker genotypes and, consequently, may be useful in applied breeding programs. The objective of this paper is to present a flanking-marker, TM-BLUP model that is applicable to interpopulation single crosses that characterize maize (Zea mays L.) breeding programs. The performance of a single cross is modeled as the sum of testcross additive and dominance effects at unmarked quantitative trait loci (QTL) and at marked QTL (MQTL). The TM-BLUP model requires information on the recombination frequencies between flanking markers and the MQTL and on MQTL variances. A tabular method is presented for calculating the conditional probability that MQTL alleles in two inbreds are identical by descent given the observed marker genotypes (G k obs) at the kth MQTL. Information on identity by descent of MQTL alleles can then be used to calculate the conditional covariance of MQTL effects between single crosses given G k obs. The inverse of the covariance matrix for dominance effects at unmarked QTL and MQTL can be written directly from the inverse of the covariance matrices of the corresponding testcross additive effects. In practice, the computations required in TM-BLUP may be prohibitive. The computational requirements may be reduced with simplified TM-BLUP models wherein dominance effects at MQTL are excluded, only the single crosses that have been tested are included, or information is pooled across several MQTL. Received: 22 June 1997 / Accepted: 25 February 1998  相似文献   

19.
Methods for detecting genetic linkage are more powerful when they fully use all of the data collected from pedigrees. We first discuss a method for obtaining the probability that a pedigree member has a given genotype, conditional on the phenotypes of his relatives. We then develop a rapid method to obtain the conditional probabilities of identity-by-descent sharing of marker alleles for all related pairs of individuals from extended pedigrees. The method assumes that the individuals are noninbred and that the relationship between genotype and phenotype is known for the marker locus studied. The probabilities of identity-by-descent sharing among relative pairs, conditional on marker phenotype information, can then be used in any of the model free tests for linkage between a trait locus and a marker locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号