首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kamensky YA  Palmer G 《FEBS letters》2001,491(1-2):119-122
Low-temperature electron paramagnetic resonance (EPR) spectroscopy, circular dichroism and two-component redox titration have previously provided evidence for two different ascorbate-reducible heme centers in cytochrome b(561) present in chromaffin granule membranes. These species have now been observed by room and liquid nitrogen temperature absorption spectroscopy. The visualization of these heme centers becomes possible as a consequence of utilizing chromaffin granule membranes prepared by a mild procedure. Additionally, a new redox center, not reducible by ascorbate, was discovered by both EPR and absorption spectroscopy. It constitutes about 15% of the heme absorbance of chromaffin membranes at 561 nm and has EPR characteristics of a well-organized highly axial low-spin heme center (thus making it unlikely that it is a denatured species). This species is either an alternative form of one of the hemes of cytochrome b(561) that has a very low redox potential or a b-type cytochrome distinct from b(561).  相似文献   

2.
The solubilization of four integral membrane proteins (i.e. cytochrome b-561 of the chromaffin granule membrane, cytochrome b5 of the endoplasmic reticulum and the mitochondrial b-type cytochrome(s) as well as cytochrome c oxidase) has been studied at 0 degrees C using the non-ionic detergents of the Triton X-series having the common hydrophobic 4(1,1,3,3-tetramethylbutyl)phenoxy (t-octyl-phenoxy) group and a variable average number (n) of polar ethylene oxide units added. Following a pre-extraction of peripheral membrane and matrix proteins with low and high salt concentration and a weak non-ionic detergent (Tween 20, average hydrophile-lipophile balance (HLB) = 16.7), the amount of heme proteins solubilized by subsequent Triton X-solutions was measured. With the detergents tested the degree of solubilization decreased in the sequence cytochrome b-561 greater than cytochrome b5 greater than mitochondrial cytochrome(s) b and parallelled the effect of the detergents on light scattering and the phospholipid to protein ratio of the three membranes. For all the b-cytochromes, the solubilizing power of the detergent increased with decreasing average length of the polar ethylene oxide chain and the hydrophile-lipophile balance as long as clouding did not occur (e.g. Triton X-114,n = 7.5 and HLB = 12.4). Thus, the greatest difference in the degree os solubilization of the three cytochromes was observed with Triton X-405 (n = 40 and HLB = 17.9). All the cytochromes were most efficiently solubilized (i.e. approx. 90%) by Triton X-100 (n = 9.5 and HLB = 13.5).  相似文献   

3.
Kamensky Y  Liu W  Tsai AL  Kulmacz RJ  Palmer G 《Biochemistry》2007,46(29):8647-8658
Cytochrome (cyt) b561 transports electrons across the membrane of chromaffin granules (CG) present in the adrenal medulla, supporting the biosynthesis of norepinephrine in the CG matrix. We have conducted a detailed characterization of cyt b561 using electron paramagnetic resonance (EPR) and optical spectroscopy on the wild-type and mutant forms of the cytochrome expressed in insect cells. The gz = 3.7 (low-potential heme) and gz = 3.1 (high-potential heme) signals were found to represent the only two authentic hemes of cyt b561; models that propose smaller or greater amounts of heme can be ruled out. We identified the axial ligands to hemes in cyt b561 by mutating four conserved histidines (His54 and His122 at the matrix-side heme center and His88 and His161 at the cytoplasmic-side heme center), thus confirming earlier structural models. Single mutations of any of these histidines produced a constellation of spectroscopic changes that involve not one but both heme centers. We hypothesize that the two hemes and their axial ligands in cyt b561 are integral parts of a structural unit that we term the "kernel". Histidine to glutamine substitutions in the cytoplasmic-side heme center but not in the matrix-side heme center led to the retention of a small fraction of the low-potential heme with gz = 3.7. We provisionally assign the low-potential heme to the matrix side of the membrane; this arrangement suggests that the membrane potential modulates electron transport across the CG membrane.  相似文献   

4.
The spectral properties of sympathetic nerve vesicles isolated from the vas deferens of the rat are similar to those of the bovine chromaffin granule membranes and bovine nerve trunk vesicles, indicating the presence of the specific cytochrome b-561. The cytochrome occurs only in the fractions containing nerve vesicles, thus suggesting usefulness as a marker enzyme.  相似文献   

5.
Bovine adrenal chromaffin granule cytochrome (cyt) b561 is a transmembrane hemoprotein that plays a key role in transporting reducing equivalents from ascorbate to dopamine-beta-hydroxylase for catecholamine synthesis. We have developed procedures for expression and purification of functional bovine adrenal cyt b561 in insect and yeast cell systems. The bovine cyt b561 coding sequence, with or without a hexahistidine-tag sequence at the C-terminus, was cloned into the pVL1392 transfer vector under the control of the polyhedrin promoter to generate recombinant baculovirus for protein expression in Sf9 insect cells (approximately 0.5 mg detergent-solubilized cyt b561/L culture). For the yeast system, the cyt b561 cDNA was modified with a hexahistidine-tag sequence at the C-terminus, and inserted into the pPICZB vector under the control of the alcohol oxidase promoter. The recombinant plasmid was transformed into Pichia pastoris GS115 competent cells to give methanol-inducible cyt b561 expression (approximately 0.7 mg detergent-solubilized cyt b561/L culture). Recombinant His-tagged cyt b561 expressed in Sf9 or Pichia cells was readily solubilized from membrane fractions with dodecyl maltoside and purified to electrophoretic homogeneity by one-step chromatography on Ni-NTA affinity resin. The purified recombinant cytochrome from both systems had a heme to protein ratio close to two and was fully functional, as judged by comparison with the spectroscopic and kinetic parameters of the endogenous cytochrome from chromaffin granules. A novel procedure for isolation of chromaffin granule membranes was developed to utilize frozen adrenal glands instead of fresh tissue.  相似文献   

6.
Duodenal cytochrome b (Dcytb or Cybrd1) is an iron-regulated protein, highly expressed in the duodenal brush border membrane. It has ferric reductase activity and is believed to play a physiological role in dietary iron absorption. Its sequence identifies it as a member of the cytochrome b(561) family. A His-tagged construct of human Dcytb was expressed in insect Sf9 cells and purified. Yields of protein were increased by supplementation of the cells with 5-aminolevulinic acid to stimulate heme biosynthesis. Quantitative analysis of the recombinant Dcytb indicated two heme groups per monomer. Site-directed mutagenesis of any of the four conserved histidine residues (His 50, 86, 120 and 159) to alanine resulted in much diminished levels of heme in the purified Dcytb, while mutation of the non-conserved histidine 33 had no effect on the heme content. This indicates that those conserved histidines are heme ligands, and that the protein cannot stably bind heme if any of them is absent. Recombinant Dcytb was reduced by ascorbate under anaerobic conditions, the extent of reduction being 67% of that produced by dithionite. It was readily reoxidized by ferricyanide. EPR spectroscopy showed signals from low-spin ferriheme, consistent with bis-histidine coordination. These comprised a signal at gmax=3.7 corresponding to a highly anisotropic species, and another at gmax=3.18; these species are similar to those observed in other cytochromes of the b561 family, and were reducible by ascorbate. In addition another signal was observed in some preparations at gmax=2.95, but this was unreactive with ascorbate. Redox titrations indicated an average midpoint potential for the hemes in Dcytb of +80 mV+/-30 mV; the data are consistent with either two hemes at the same potential, or differing in potential by up to 60 mV. These results indicate that Dcytb is similar to the ascorbate-reducible cytochrome b561 of the adrenal chromaffin granule, though with some differences in midpoint potentials of the hemes.  相似文献   

7.
A soft method of purification of cytochrome-561 from the membranes of chromaffin granules has been developed. It permits isolating a protein in its natural microsurroundings, i.e. a complex with lipids, provided that a buffer with high ionic force is used without a detergent. This method helps obtaining an electrophoretically homogeneous preparation as a high-molecular lipoprotein hexamer whose molecular weight is about 400 kDa. Basic physicochemical parameters of this preparation (subunit composition, content and composition of lipids, heme content, spectra of optical absorption of the oxidized and reduced forms) are determined. Possible presence of two forms of cytochrome b-561 in the chromaffin granules is discussed.  相似文献   

8.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups and transports electron equivalents across the vesicle membranes to convert intravesicular monodehydroascorbate radical to ascorbate. To elucidate the mechanism of the transmembrane electron transfer, effects of the treatment of purified cytochrome b(561) with diethyl pyrocarbonate, a reagent specific for histidyl residues, were examined. We found that when ascorbate was added to the oxidized form of diethyl pyrocarbonate-treated cytochrome b(561), less than half of the heme iron was reduced but with a very slow rate. In contrast, radiolytically generated monodehydroascorbate radical was oxidized rapidly by the reduced form of diethyl pyrocarbonate-modified cytochrome b(561), as observed for untreated cytochrome b(561). These results indicate that the heme center specific for the electron acceptance from ascorbate was perturbed by the modification of amino acid residues nearby. We identified the major modification sites by mass spectrometry as Lys85, His88, and His161, all of which are fully conserved and located on the extravesicular side of cytochrome b(561) in the membranes. We suggest that specific N-carbethoxylation of the histidyl ligands of the heme b at extravesicular side abolishes the electron-accepting ability from ascorbate.  相似文献   

9.
The interaction of acidic copper-containing protein from the membranes of chromaffin granules has been investigated with cytochrome b-561 and dopamine-beta-monooxygenase from the same source. By the use of spectral and polarographic measurements it was demonstrated that the acidic copper-containing protein acts as an electron acceptor for cytochrome b-561 and as electron donor in the reactions, catalyzed by dopamine-beta-monooxygenase. According to the data obtained the possible function of the acidic copper-containing protein in vivo on the area of electron transfer chain between cytochrome b-561 and dopamine-beta-monooxygenase are discussed. The activation or inhibition of the electron transfer reactions by a variety of phospholipids, analogs of membrane lipids of chromaffin granules has been established. The experiments were performed in a model systems by the use of highly purified preparations of proteins and bilamellar liposomes and micelles, prepared from the corresponding phospholipids.  相似文献   

10.
Assignment of ESR signals of Escherichia coli terminal oxidase complexes   总被引:1,自引:0,他引:1  
The ESR signals of all the major components of the aerobic respiratory chain of Escherichia coli were measured and assigned at liquid helium temperature. Cytochrome b-556 gives a weak high-spin signal at g = 6.0. The terminal oxidase cytochrome b-562 . o complex gives signals at g = 6.0, 3.0 and 2.26, and the terminal oxidase cytochrome b-558 . d complex gives signals at g = 6.0, 2.5 and 2.3. A signal derived from cupric ions in the purified cytochrome b-562 . o complex was observed near g = 2.0. It was shown by the effects of KCN or NaN3 on cytochromes under the air-oxidized conditions that cytochrome o has a high-spin heme and cytochrome d has a low-spin heme. The E'm values for cytochromes b-558 and d, respectively, determined by potentiometric titration of the ESR signals were 140 and 240 mV in the membrane preparation, and 30 and 240 mV in the purified preparation. The oxidized cytochrome d gave intense low-spin signals at g = 2.5 and 2.3, while cytochrome d under the air-oxidized conditions gave corresponding signals of only very low intensity. These results suggested that most of the cytochrome d under the air-oxidized conditions contains a diamagnetic iron atom with a bound dioxygen.  相似文献   

11.
Adrenal cytochrome b(561) (cyt b(561)), a transmembrane protein that shuttles reducing equivalents derived from ascorbate, has two heme centers with distinct spectroscopic signals and reactivity towards ascorbate. The His54/His122 and His88/His161 pairs furnish axial ligands for the hemes, but additional amino acid residues contributing to the heme centers have not been identified. A computational model of human cyt b(561) (Bashtovyy, D., Berczi, A., Asard, H., and Pali, T. (2003) Protoplasma 221, 31-40) predicts that His92 is near the His88/His161 heme and that His110 abuts the His54/His122 heme. We tested these predictions by analyzing the effects of mutations at His92 or His110 on the spectroscopic and functional properties. Wild type cytochrome and mutants with substitutions in other histidine residues or in Asn78 were used for comparison. The largest lineshape changes in the optical absorbance spectrum of the high-potential (b(H)) peak were seen with mutation of His92; the largest changes in the low-potential (b(L)) peak lineshape were observed with mutation of His110. In the EPR spectra, mutation of His92 shifted the position of the g=3.1 signal (b(H)) but not the g=3.7 signal (b(L)). In reductive titrations with ascorbate, mutations in His92 produced the largest increase in the midpoint for the b(H) transition; mutations in His110 produced the largest decreases in DeltaA(561) for the b(L) transition. These results indicate that His92 can be considered part of the b(H) heme center, and His110 part of the b(L) heme center, in adrenal cyt b(561).  相似文献   

12.
The solubilization of four integral membrane proteins (i.e. cytochrome b-561 of the chromaffin granule membrane, cytochrome b5 of the endoplasmic reticulum and the mitochondrial b-type cytochrome(s) as well as cytochrome c oxidase) has been studied at 0 °C using the non-ionic detergents of the Triton X-series having the common hydrophobic 4(1,1,3,3-tetramethylbutyl)phenoxy (t-octyl-phenoxy) group and a variable average number ( ) of polar ethylene oxide units added. Following a pre-extraction of peripheral membrane and matrix proteins with low and high salt concentration and a weak non-ionic detergent (Tween 20, average hydrophile-lipophile balance ( ), the amount of heme proteins solubilized by subsequent Triton X-solutions was measured. With the detergents tested the degree of solubilization decreased in the sequence cytochrome b-561 >cytochrome b5 >mitochondrial cytochrome(s) b and parallelled the effect of the detergents on light scattering and the phospholipid to protein ratio of the three membranes. For all the b-cytochromes, the solubilizing power of the detergent increased with decreasing average length of the polar ethylene oxide chain and the hydrophile-lipophile balance as long as clouding did not occur (e.g. Triton X-114, and ). Thus, the greatest difference in the degree of solubilization of the three cytochromes was observed with Triton X-405 ( and ). All the cytochromes were most efficiently solubilized (i.e. approx. 90%) by Triton X-100 ( and ).  相似文献   

13.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two hemes b with EPR signals at g(z) = 3.69 and 3.14 and participates in transmembrane electron transport from extravesicular ascorbate to an intravesicular monooxygenase, dopamine beta-hydroxylase. Treatment of purified cytochrome b(561) in an oxidized state with a sulfhydryl reagent, 4,4'-dithiodipyridine, caused the introduction of only one 4-thiopyridine group per b(561) molecule at either Cys57 or Cys125. About half of the heme centers of the modified cytochrome were reduced rapidly with ascorbate as found for the untreated sample, but the final reduction level decreased to approximately 65%. EPR spectra of the modified cytochrome showed that a part of the g(z) = 3.14 low-spin EPR species was converted to a new low-spin species with g(z) = 2.94, although a considerable part of the heme center was concomitantly converted to a high-spin g = 6 species. Addition of ascorbate to the modified cytochrome caused the disappearance or significant reduction of the EPR signals at g(z) = 3.69 and 3.14 of low-spin species and at g = 6.0 of the high-spin species, but not for the g(z) approximately 2.94 species. These results suggested that the bound 4-thiopyridone at either Cys57 or Cys125 affected the intravesicular heme center and converted it partially to a non-ascorbate-reducible form. The present observations suggested the importance of the two well-conserved Cys residues near the intravesicular heme center and implied their physiological roles during the electron donation to the monodehydroascorbate radical.  相似文献   

14.
(1) Redox titrations of cytochrome b-561 have been performed with the purified cytochrome and with intact and detergent-solubilized chromaffin-granule membranes. (2) The midpoint redox potential of the cytochrome is 100–130 mV; this depends upon the composition of the buffer, but is independent of pH in the range 5.5–7.5; partial proteolysis of the cytochrome raises the midpoint potential to 160 mV. (3) The Nernst plots of titration data have slopes of 75–115 mV, and are in some cases sigmoid in shape. This may be explained by negative cooperativity during redox transitions in oligomeric cytochrome b-561. (4) Measurements of the haem and cytochrome content of chromaffin granule membrane suggest a haem content of 1 mol/mol protein. (5) Chemical crosslinking of cytochrome b-561 suggests that it may exist as an oligomer of 4–6 polypeptide chains within the chromaffin granule membrane. Aggregation of purified cytochrome b-561 was shown by gel filtration studies and by immunological methods in SDS-polyacrylamide gels. Studies of the molecular weight of the aggregates suggest that the monomer has a molecular weight close to 22 000, but migrates anomalously slowly during electrophoresis.  相似文献   

15.
Flash-induced redox changes of b-type and c-type cytochromes have been studied in chromatophores from the aerobic photosynthetic bacterium Roseobacter denitrificans under redox-controlled conditions. The flash-oxidized primary donor P+ of the reaction center (RC) is rapidly re-reduced by heme H1 (Em,7 = 290 mV), heme H2 (Em,7 = 240 mV) or low-potential hemes L1/L2 (Em,7 = 90 mV) of the RC-bound tetraheme, depending on their redox state before photoexcitation. By titrating the extent of flash-induced low-potential heme oxidation, a midpoint potential equal to -50 mV has been determined for the primary quinone acceptor QA. Only the photo-oxidized heme H2 is re-reduced in tens of milliseconds, in a reaction sensitive to inhibitors of the bc1 complex, leading to the concomitant oxidation of a cytochrome c spectrally distinct from the RC-bound hemes. This reaction involves cytochrome c551 in a diffusional process. Participation of the bc1 complex in a cyclic electron transfer chain has been demonstrated by detection of flash-induced reduction of cytochrome b561, stimulated by antimycin and inhibited by myxothiazol. Cytochrome b561, reduced upon flash excitation, is re-oxidized slowly even in the absence of antimycin. The rate of reduction of cytochrome b561 in the presence of antimycin increases upon lowering the ambient redox potential, most likely reflecting the progressive prereduction of the ubiquinone pool. Chromatophores contain approximately 20 ubiquinone-10 molecules per RC. At the optimal redox poise, approximately 0.3 cytochrome b molecules per RC are reduced following flash excitation. Cytochrome b reduction titrates out at Eh < 100 mV, when low-potential heme(s) rapidly re-reduce P+ preventing cyclic electron transfer. Results can be rationalized in the framework of a Q-cycle-type model.  相似文献   

16.
Cytochrome b561 from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups. We verified that purified cytochrome b561 can donate electron equivalents directly to cytochrome c. The purified cytochrome b561 was successfully reconstituted into cholesterol-phosphatidylcholine-phosphatidylglycerol vesicles by a detergent-dialysis and extrusion method. When ascorbate-loaded vesicles with cytochrome b561 were mixed with ferricytochrome c, the intravesicular ascorbate was able to reduce external thiazole blue or cytochrome c. The reduction of thiazole blue or cytochrome c was dependent on the presence of cytochrome b561 in the vesicle membranes. Pre-treatment of cytochrome b561 with diethylpyrocarbonate suppressed the reduction of extravesicular cytochrome c significantly, confirming that the reduction was not due to leakage of ascorbate from the vesicles. The topology of the reconstituted cytochrome b561 in the vesicle membranes was examined by treatment with trypsin followed by SDS-PAGE and MALDI-TOF-MS analyses. Only one major cleavage site at Lys191 was identified, indicating that cytochrome b561 was reconstituted into the membranes in an inside-out orientation irrespective of the modification with diethylpyrocarbonate. The addition of a soluble form of dopamine beta-hydroxylase to the external medium resulted in the successful reconstitution of the hydroxylation activity towards tyramine, an analogue of dopamine, suggesting that a direct electron transfer via complex formation occurred. This activity was enhanced significantly upon the addition of ferricyanide as a mediator between cytochrome b561 and dopamine beta-hydroxylase.  相似文献   

17.
A homogenate of purified chromaffin cells was fractionated, after removal of the nuclear fraction, by sucrose density gradient ultracentrifugation. The presence and subcellular localization of low molecular mass GTP-binding proteins was explored by incubation of blots of proteins from different subcellular fractions with [alpha-32P]GTP in the presence of Mg2+. The fractions enriched in intact chromaffin granule markers, i.e. catecholamines, chromogranin A, chromogranin B and cytochrome b-561 were also enriched in labelled GTP-binding proteins. Two major labelled components of 23 and 29 kDa were rapidly detected by autoradiography. Traces of 26 and 27 kDa components were also present. These components were detectable in both plasma and granule membranes. In addition to these components, the cytosolic fraction contained another GTP-binding protein of about 20 kDa. Binding of [alpha-32P]GTP was specific and dependent on Mg2+. By analogy to the findings reported in non-mammalian systems, the observations described here suggest the involvement of low molecular mass GTP-binding proteins in the chromaffin cell secretory process.  相似文献   

18.
1. The absorption coefficient of human neutrophil plasma-membrane reduced-minus-oxidized cytochrome b-245 was determined [delta epsilon (mM; 559-540 nm) = 21.6 cm-1]. 2. Neutrophil polymorphonuclear leucocytes (neutrophils) were prepared from human, ox, horse and pig blood. In each case plasma-membrane fractions were found to contain low-potential cytochrome b. When membranes from horse neutrophils were incubated anaerobically with either NADH or NADPH the cytochrome b became reduced. Prior stimulation of the cells with phorbol myristate acetate did not increase the rate or extent of cytochrome b reduction in isolated membranes, but did increase both the rate and extent of reduction by NADPH in Triton-treated cells. 3. A cytochrome b was present also in the specific granule fraction of human neutrophils. Its Em (pH 7.0) was found to be -248 mV, very similar to that of the plasma-membrane cytochrome b. 4. The rate of oxidation of reduce cytochrome b-245 by air-saturated buffer, was determined by using stopped-flow techniques. In intact membranes t 1/2 for oxidation was 4.7 ms. This rate is sufficiently rapid to support the view that cytochrome b-245 is the oxidase in the respiratory burst of neutrophils. 5. Plasma-membrane cytochrome b of human neutrophils formed a complex with CO. At room temperature and 1 atm of CO approx. 40% of the cytochrome formed a complex; approx. 60% binding was measured at the increased concentration of dissolved CO achieved at 5 degrees C. The concentration of CO giving 50% binding was 1.18 mM.  相似文献   

19.
20.
(1) The role of the ubiquinone pool in the reactions of the cyclic electron-transfer chain has been investigated by observing the effects of reduction of the ubiquinone pool on the kinetics and extent of the cytochrome and electrochromic carotenoid absorbance changes following flash illumination. (2) In the presence of antimycin, flash-induced reduction of cytochrome b-561 is dependent on a coupled oxidation of ubiquinol. The ubiquinol oxidase site of the ubiquinol:cytochrome c(2) oxidoreductase catalyses a concerted reaction in which one electron is transferred to a high-potential chain containing cytochromes c(1) and c(2), the Rieske-type iron-sulfur center, and the reaction center primary donor, and a second electron is transferred to a low-potential chain containing cytochromes b-566 and b-561. (3) The rate of reduction of cytochrome b-561 in the presence of antimycin has been shown to reflect the rate of turnover of the ubiquinol oxidase site. This diagnostic feature has been used to measure the dependence of the kinetics of the site on the ubiquinol concentration. Over a limited range of concentration (0-3 mol ubiquinol/mol cytochrome b-561), the kinetics showed a second-order process, first order with respect to ubiquinol from the pool. At higher ubiquinol concentrations, other processes became rate determining, so that above approx. 25 mol ubiquinol/mol cytochrome b-561, no further increase in rate was seen. (4) The kinetics and extents of cytochrome b-561 reduction following a flash in the presence of antimycin, and of the antimycin-sensitive reduction of cytochrome c(1) and c(2), and the slow phase of the carotenoid change, have been measured as a function of redox potential over a wide range. The initial rate for all these processes increased on reduction of the suspension over the range between 180 and 100 mV (pH 7). The increase in rate occurred as the concentration of ubiquinol in the pool increased on reduction, and could be accounted for in terms of the increased rate of ubiquinol oxidation. It is not necessary to postulate the presence of a tightly bound quinone at this site with altered redox properties, as has been previously assumed. (5) The antimycin-sensitive reactions reflect the turnover of a second catalytic site of the complex, at which cytochrome b-561 is oxidized in an electrogenic reaction. We propose that ubiquinone is reduced at this site with a mechanism similar to that of the two-electron gate of the reaction center. We suggest that antimycin binds at this site, and displaces the quinone species so that all reactions at the site are inhibited. (6) In coupled chromatophores, the turnover of the ubiquinone reductase site can be measured by the antimycin-sensitive slow phase of the electrochromic carotenoid change. At redox potentials higher than 180 mV, where the pool is completely oxidized, the maximal extent of the slow phase is half that at 140 mV, where the pool contains approx. 1 mol ubiquinone/mol cytochrome b-561 before the flash. At both potentials, cytochrome b-561 became completely reduced following one flash in the presence of antimycin. The results are interpreted as showing that at potentials higher than 180 mV, ubiquinol stoichiometric with cytochrome b-561 reaches the complex from the reaction center. The increased extent of the carotenoid change, when one extra ubiquinol is available in the pool, is interpreted as showing that the ubiquinol oxidase site turns over twice, and the ubiquinone reductase sites turns over once, for a complete turnover of the ubiquinol:cytochrome c(2) oxidoreductase complex, and the net oxidation of one ubiquinol/complex. (7) The antimycin-sensitive reduction of cytochrome c(1) and c(2) is shown to reflect the second turnover of the ubiquinol oxidase site. (8) We suggest that, in the presence of antimycin, the ubiquinol oxidase site reaches a quasi equilibrium with ubiquinol from the pool and the high- and low-potential chains, and that the equilibrium constant of the reaction catalysed constrains the site to the single turnover under most conditions. (9) The results are discussed in the context of a detailed mechanism. The modified Q-cycle proposed is described by physicochemical parameters which account well for the results reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号