首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concanavalin A (Con A) exists in dimeric state at pH 5. In concentration range 20-60% (v/v) 2,2,2-trifluoroethanol (TFE) and 2-40% (v/v) 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), Con A at pH 5.0 shows visible aggregation. However, when succinyl Con A was used, no aggregation was observed in the entire concentration range of fluoroalcohols (0-90% v/v TFE and HFIP) and resulted in stable alpha-helix formation. Temperature-induced concentration-dependent aggregation in Con A was also found to be prevented/reduced in succinylated form. Possible role of electrostatic repulsion among residues in the prevention of hydrophobically driven aggregation has been discussed. Results indicate that succinylation of a protein resulted in greater stability (in both beta-sheet and alpha-helical forms) against alcohol-induced and temperature-induced concentration-dependent aggregation and this observation may play significant role in amyloid-forming proteins. Effect of TFE and HFIP on the conformation of a dimeric protein, Succinylated Con A, has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of hydrophobic dye ANS (8-anilinonaphthalene-1-sulfonic acid). Far UV-CD, a probe for secondary structure shows loss of native secondary structure in the presence of low concentration of both the alcohols, TFE (10% v/v) and HFIP (4% v/v). Upon addition of higher concentration of these alcohols, Succinylated Con A exhibited transformation from beta-sheet to alpha-helical structure. Intrinsic tryptophan fluorescence studies, ANS binding and near UV-CD experiments indicate the protein is more expanded, have more exposed hydrophobic surfaces and highly disrupted tertiary structure at 60% (v/v) TFE and 30% (v/v) HFIP concentrations. Taken together, these results it might be concluded that TFE and HFIP induce two intermediate states at their low and high concentrations in Succinyl Con A.  相似文献   

2.
We have analyzed by circular dichroism (CD) and proton nuclear magnetic resonance (NMR) the helical propensity of the all-beta protein acidic fibroblast growth factor (aFGF) and two peptides corresponding to beta-strand 8 (beta8 peptide, amino acids 95-107) and the beta-strand 8/turn/beta-strand 9 hairpin (beta8/9 peptide, amino acids 95-114), which has been involved in receptor binding. A secondary structure prediction of aFGF carried out by several procedures labels the 95-104 sequence as predominantly alpha-helical. A titration of aFGF with 2,2,2-trifluoroethanol (TFE) induces a change in the far-UV CD spectrum of the protein giving rise to a prominent alpha-helical shape (22% alpha-helix). The cooperativity of the transition and the moderate TFE concentrations used (midpoint at 24%) suggest that the effect of TFE is specific. Moreover, a titration performed at pH 2 yields a higher amount of alpha-helix (55%) at a smaller TFE concentration. Synthetic peptides containing the beta8 and beta8/9 sequences display a random coil conformation at pH 7 but acquire alpha-helical structure in the presence of TFE, methanol, and SDS micelles. At pH below 3.0 a significant amount (20-30%) of alpha-helical conformation is present in both the beta8 and beta8/9 peptides even in the absence of other solvent additives. The secondary structure of the peptides was determined by proton nuclear magnetic resonance (1H NMR). These results suggest that the 95-114 sequence of aFGF has helical propensity and that the protein may fold nonhierarchically in the early steps of folding, acquiring its final beta-structure by a later interaction with the rest of the polypeptide.  相似文献   

3.
Xu Q  Keiderling TA 《Biochemistry》2005,44(22):7976-7987
Conformational structure changes in concanavalin A (Con A), a legume lectin protein which is composed of 18 beta-strands, induced by dissolving in 50% trifluoroethanol (TFE) were monitored at neutral and low pH by far- and near-UV circular dichroism (CD), fluorescence, and FTIR under equilibrium conditions. Stopped-flow studies using CD and fluorescence as well as FTIR, at low and high protein concentration, respectively, were carried out to follow the time-dependent conformation changes occurring after rapid mixing of the protein with TFE. Equilibrium CD results show that, upon addition of TFE, low-concentration Con A transforms to a highly alpha-helical conformation at both neutral and low pH. However, at neutral pH under high protein concentration conditions, aggregation and precipitation are eventually detected with FTIR, indicating that a final beta-structure is attained. Stopped-flow fluorescence shows the existence of an unfolding intermediate for pH 2.0 and 4.5, which could be related to the dissociation of the dimer form. However, evidence for an intermediate is not obtained at pH 6.7, where the native protein is a tetramer. Stopped-flow FTIR is consistent with these results, indicating formation of a H(+)-stabilized intermediate alpha-helical conformation before aggregation develops. Con A in TFE provides an example of an intermediate with non-native secondary structure appearing on the unfolding pathway. On the basis of the kinetic results obtained, an unfolding mechanism is proposed and some stable intermediates are identified. In turn, the slow structural change of Con A induced by TFE provides a useful model system for study of protein unfolding due to its accessibility with several spectroscopic and kinetic tools.  相似文献   

4.
Organic solvents may induce non-native structures of proteins that mimic folding intermediates and/or conformations that occur in proximity to biological membranes. Here we systematically investigate the effects of simple (i.e., MeOH and EtOH) and fluorinated (i.e., trifluoroethanol, TFE) alcohols on the secondary structure and thermodynamic stability of two complementary model proteins using a combination of circular dichroism, fluorescence, and Fourier transform infrared (FTIR) detection methods. The selected proteins are alpha-helical Borrelia burgdorferi VlsE and beta-sheet human mitochondrial co-chaperonin protein 10 (cpn10). We find that switches between VlsE's native and non-native superhelical and beta-sheet structures readily occur (pH 7, 20 degrees C). The pathway depends on the alcohol: addition of MeOH induces a transition to a superhelical structure that is followed by conversion to beta-structure, whereas EtOH only unfolds the protein. TFE unfolds VlsE at low percentages but promotes the formation of a superhelical state upon further additions. For cpn10, both MeOH and TFE additions govern initial unfolding; however, further additions of MeOH result in the formation of a non-native beta-structure, whereas subsequent additions of TFE induce a superhelical structure. EtOH additions promptly unfold and precipitate cpn10. Both VlsE's and cpn10's non-native structures exhibit high stability toward chemical and thermal perturbations. This study demonstrates that in response to different alcohols, polypeptides can readily adopt both alpha- and beta-enriched conformations. The biological significance of these findings is discussed.  相似文献   

5.
A molten globule-like intermediate of Con-A was obtained when subjected to acid unfolding. At pH 2 the intermediate was found to have native-like secondary structure, somewhat denatured tertiary structure and maximum ANS binding. Further the stability of this intermediate was studied in presence of fluoroalcohols (TFE and HFIP) and polyethylene glycols (PEG-400, 4000 and 20,000). Secondary structural changes were monitored by far-UV CD while alterations in the tertiary structure of the acid unfolded intermediate were probed by near-UV CD. To study the environment and position of the tryptophan residues present intrinsic fluorescence studies were performed. ANS binding studies were also made to know the extent of exposure of the hydrophobic patches. Using the above-mentioned techniques it was found that in presence of fluoroalcohols the pH 2 intermediate was transformed to a state with predominant alpha-helical secondary and denatured tertiary structures. In the pathway of these transformations MG-like intermediates were formed at 10% TFE and 6% HFIP. The folding intermediate of Con-A obtained at pH 2 underwent a series of conformational changes when exposed to different molecular weight PEGs. Secondary structure was induced by low molecular weight PEG-400 and low concentrations of PEG-4000 and PEG-20,000 while at higher concentrations transition in structure was observed. Tertiary structure was stabilized only at low concentrations of PEG-400. PEG-4000 and PEG-20,000 in the whole concentration range resulted in the loss of tertiary structure.  相似文献   

6.
We have previously characterized an acid-unfolded (U(A)) state of Mucor miehei lipase at pH 2. The effect of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) resulted in characterization of molten-globule (MG) like states with beta-sheet secondary structure at 15% (v/v) TFE and 6% (v/v) HFIP. alpha-Helical states accumulate at 80% (v/v) TFE and 30% (v/v) HFIP.  相似文献   

7.
A L Stone  J Y Park  R E Martenson 《Biochemistry》1985,24(23):6666-6673
Myelin basic protein (MBP) is a major protein constituent of the myelin sheath of the central nervous system, where it is believed to have functional alpha-helical segments. One element of the function of the protein might be "conformational adaptability" of specific regions of its amino acid sequence, since the purified protein appears to be largely devoid of ordered structure. To pursue this question, low-ultraviolet circular dichroism (CD) spectroscopy was conducted on the sequential thrombic peptides 1-95 and 96-168 of the protein in the presence of 0-92% trifluoroethanol (TFE), a solvent known to promote stable secondary structures in polypeptides. The series of CD spectra of the oligopeptides were subjected to a computerized best-fit analysis of four peptide conformations, the alpha-helix, beta-structure, beta-turn, and nonordered form. Agreement between experimental and best-fit composite spectra was achieved when standard CD curves of peptide conformations were derived from known theoretical spectra and experimental spectra of polypeptides. In dilute buffer alone, oligopeptides 1-95 and 96-168 evidence no alpha-helix but significant beta-structure (18% and 23%, respectively), as well as a predominant, extended nonordered conformation. However, the two parts of the protein differed in conformational adaptability. From 0% to 30% TFE, 96-168 exhibited concomitant transitions to 10% helix and 32% beta-structure from the nonordered form. In contrast, in 10-30% TFE, 1-95 underwent a transition to approximately 21% helix with partial loss of beta-structure as well as nonordered form; higher concentrations of TFE (40-75%) promoted additional transitions to both helix and beta-structure (totaling 33% and 25%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Alcohols denature the native state of proteins, and also stabilize the alpha-helical conformation in unfolded proteins and peptides. Among various alcohols, trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) are often used because of their high potential to induce such effects. However, the reason why TFE and HFIP are more effective than other alcohols is unknown. Using CD, we studied the effects of TFE and HFIP as well as reference alcohols, i.e., methanol, ethanol, and isopropanol, on the conformation of bovine beta-lactoglobulin and the bee venom melittin at pH 2. Upon addition of alcohols, beta-lactoglobulin exhibited a transformation from the native state, consisting of beta-sheets, to the alpha-helical state, whereas melittin folded from the unfolded state to the alpha-helical state. In both cases, the order of effectiveness of alcohols was shown to be: HFIP > TFE > isopropanol > ethanol > methanol. The alcohol-induced transitions were analyzed assuming a two-state mechanism to obtain the m value, a measure of the dependence of the free energy change on alcohol concentration. Comparison of the m values indicates that the high potential of TFE can be explained by the additive contribution of constituent groups, i.e., F atoms and alkyl group. On the other hand, the high potential of HFIP is more than that expected from the additive effects, suggesting that the cooperative formation of micelle-like clusters of HFIP is important.  相似文献   

9.
The effect of increasing concentrations of 2,2,2-trifluoroethanol (TFE) on the conformational stability of the Shiga toxin B-subunit (STxB), a bacterial homopentameric protein involved in cell-surface binding and intracellular transport, has been studied by far-, near-UV circular dichroism (CD), intrinsic fluorescence, analytical ultracentrifugation, and differential scanning calorimetry (DSC) under equilibrium conditions. Our data show that the native structure of STxB is highly perturbed by the presence of TFE. In fact, at concentrations of TFE above 20% (v/v), the native pentameric conformation of the protein is cooperatively transformed into a helix-rich monomeric and partially folded conformational state with no significant tertiary structure. Additionally, no cooperative transition was detected upon a further increase in the TFE concentration (above 40% (v/v)). The thermal stability of STxB was investigated at several different TFE concentrations using DSC and CD spectroscopy. Thermal transitions at TFE concentrations of up to 20% (v/v) were successfully fitted to the two-state folding/unfolding coupled to oligomerization model consistent with the transition between a pentameric folded conformation to a monomeric state of the protein, which the presence of TFE stabilizes as a partially folded conformation.  相似文献   

10.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

11.
The secondary structure of a hydrophobic myelin protein (lipophilin), reconstituted with dimyristoylphosphatidylcholine or dimyristoylphosphatidylglycerol, was investigated by Fourier-transform infrared spectroscopy. Protein infrared spectra in the amide I region were analyzed quantitatively using resolution enhancement and band fitting procedures. Lipophilin in a phospholipid environment adopts a highly ordered secondary structure which at room temperature consists predominantly of alpha-helix (approximately 55%) and beta-type conformations (36%). The secondary structure of the protein is not affected by the lipid gel to liquid crystalline phase transition. Heating of the lipid-protein complex above approximately 35 degrees C results in a gradual decrease in alpha-helical content, accompanied by an increase in the amount of beta-structures. Lipophilin dissolved in 2-chloroethanol is, compared to the protein in a lipid environment, richer in the alpha-helical conformation but still contains a sizable amount of beta-structure.  相似文献   

12.
Human serum albumin (HSA) exists in a molten-globule like state at low pH (pH 2.0). We studied the effects of trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) on the acid-denatured state of HSA by far-UV circular dichroism (CD), near-UV CD, tryptophan fluorescence, and 1-anilinonaphthalene-8-sulfonic acid (ANS) binding. At pH 2.0, these alcohols induced the formation of alpha-helical structure as evident from the increase in mean residue ellipticity (MRE) value at 222 nm. On addition of different alcohols, HSA exhibited a transition from the acid-denatured state to the alpha-helical state and loss of ANS-binding sites reflected by the decrease in ANS fluorescence at 480 nm. However, the concentration range required to bring about the transition varied greatly among different alcohols. HFIP was found to have highest potential whereas methanol was least effective in inducing the transition. The order of effectiveness of alcohols was shown to be: HFIP > TFE > 2-chloroethanol > tert-butanol > isopropanol > ethanol > methanol as evident from the Cm values. The near-UV CD spectra and tryptophan fluorescence showed the differential effects of halogenated alcohols with those of alkanols. A comparison of the m values, showing the dependence of Delta GH on alcohol concentration, suggests that the helix stabilizing potential of different alcohols is due to the additive effect of different constituent groups present whereas remarkably higher potential of HFIP involves some other factor in addition to the contribution of constituent groups.  相似文献   

13.
The N-terminal domain of HIV-1 glycoprotein 41000 (FP; residues 1--23; AVGIGALFLGFLGAAGSTMGARSCONH(2)) participates in fusion processes underlying virus--cell infection. Here, we use physical techniques to study the secondary conformation of synthetic FP in aqueous, structure-promoting, lipid and biomembrane environments. Circular dichroism and conventional, (12)C-Fourier transform infrared (FTIR) spectroscopy indicated the following alpha-helical levels for FP in 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) liposomes-hexafluoroisopropanol (HFIP)>trifluoroethanol (TFE)>phosphate-buffered saline (PBS). (12)C-FTIR spectra also showed disordered FP structures in these environments, along with substantial beta-structures for FP in TFE or PBS. In further experiments designed to map secondary conformations to specific residues, isotope-enhanced FTIR spectroscopy was performed using a suite of FP peptides labeled with (13)C-carbonyl at multiple sites. Combining these (13)C-enhanced FTIR results with molecular simulations indicated the following model for FP in HFIP: alpha-helix (residues 3-16) and random and beta-structures (residues 1-2 and residues 17-23). Additional (13)C-FTIR analysis indicated a similar conformation for FP in POPG at low peptide loading, except that the alpha-helix extends over residues 1-16. At low peptide loading in either human erythrocyte ghosts or lipid extracts from ghosts, (13)C-FTIR spectroscopy showed alpha-helical conformations for the central core of FP (residues 5-15); on the other hand, at high peptide loading in ghosts or lipid extracts, the central core of FP assumed an antiparallel beta-structure. FP at low loading in ghosts probably inserts deeply as an alpha-helix into the hydrophobic membrane bilayer, while at higher loading FP primarily associates with ghosts as an aqueous-accessible, beta-sheet. In future studies, (13)C-FTIR spectroscopy may yield residue-specific conformations for other membrane-bound proteins or peptides, which have been difficult to analyze with more standard methodologies.  相似文献   

14.
2,2,2-Trifluoroethanol (TFE) denatures proteins but also stabilizes/induces alpha helical conformation in partially/completely unfolded proteins. As reported earlier from this laboratory, stem bromelain is known to exist as a partially folded intermediate (PFI) at pH 2.0. The effect of increasing concentration of TFE on the PFI of bromelain has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of the hydrophobic dye 1-anilino 8-naphthalene sulfonic acid (ANS), and near-UV CD temperature transition. Far-UV CD spectra show considerable accumulation of secondary structure at 70% (v/v) concentration of TFE with spectral features resembling the pH 7.0 preparation. Interestingly the partially folded intermediate regained significant tertiary structure/interactions, with increasing concentration of TFE, and at 60% (v/v) TFE approached almost that of the pseudo native (pH 7.0) state. Further increase to 70% (v/v) TFE, however, resulted in complete loss of tertiary structure/interactions. Studies on tryptophan fluorescence also suggested the induction of some compact structure at 60% (v/v) concentration of TFE. The partially folded intermediate showed enhanced binding of the fluorescent probe (ANS) in the presence of 60% (v/v) TFE. Taken together these observations suggest a "molten globule" state between 60 and 70% (v/v) TFE. Thermal transition studies in the near-UV CD region indicated cooperative transition for PFI in the presence of 60% (v/v) TFE changing to noncooperative transition at 70% (v/v) TFE. This was accompanied by a shift in the midpoint of thermal denaturation (T(m)) from 58 to 51 degrees C. Gradual transition and loss of cooperative thermal unfolding in the 60-70% (v/v) range of TFE also support the existence of the molten globule state.  相似文献   

15.
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to clarify the mechanism of PHF formation. Although several reports on the regulation of tau assembly have been published, it is not yet clear whether in vivo PHFs are composed of beta-structures or alpha-helices. Since the four-repeat microtubule-binding domain (4RMBD) of the tau protein has been considered to play an essential role in PHF formation, its heparin-induced assembly propensity was investigated by the thioflavin fluorescence method to clarify what conformation is most preferred for the assembly. We analyzed the assembly propensity of 4RMBD in Tris-HCl buffer with different trifluoroethanol (TFE) contents, because TFE reversibly induces the transition of the random structure to the alpha-helical structure in an aqueous solution. Consequently, it was observed that the 4RMBD assembly is most significantly favored to proceed in the 10-30% TFE solution, the concentration of which corresponds to the activated transition state of 4RMBD from a random structure to an alpha-helical structure, as determined from the circular dichroism (CD) spectral changes. Since such an assembly does not occur in a buffer containing TFE of < 10% or > 40%, the intermediate conformation between the random and alpha-helical structures could be most responsible for the PHF formation of 4RMBD. This is the first report to clarify that the non-native alpha-helical intermediate in transition from random coil is directly associated with filament formation at the start of PHF formation.  相似文献   

16.
The Antennapedia homeodomain structure consists of four helices. The helices II and III are connected by a tripeptide that forms a turn, and constitute the well-known helix-turn-helix motif. The recognition helix penetrates the DNA major groove, gives specific protein-DNA contacts and forms direct, or water-mediated, intermolecular hydrogen bonds. It was suggested that helix III (and perhaps also helix IV) might represent the recognition helix of Antennapedia homeodomain, which makes contact with the surface of the major groove of the DNA. In an attempt to clarify the helix III capabilities of assuming an helical conformation when separated from the rest of the protein, we carried out the structural determination of the recognition helix III in different solvent media. The conformational study of fragments 42-53, where residues W48 and F49, not involved in the protein-DNA interaction, were substituted by two alanines, was conducted in sodium dodecyl sulfate (SDS), trifluoroethanol (TFE) and TFE/water, using circular dichroism, nuclear magnetic resonance (NMR) and distance geometry (DG) techniques. The fragment assumes a well-defined secondary structure in TFE and in TFE/water (90/10, v/v) with an alpha-helix encompassing residues 4-9, while in TFE/water (70/30, v/v) a less regular structure was found. The DG results in the micellar system evidence the presence of a distorted alpha-helical conformation involving residues 4-8. Our results reveal that the isolated Antennapedia recognition helix III tend to preserve in solution the alpha-helical conformation even if separated from the rest of the molecule.  相似文献   

17.
Nonaqueous co-solvents, particularly 2,2,2-trifluoroethanol (TFE), have been used as tools to study protein folding. By analyzing FKBP12, an alpha/beta-protein that folds with two-state kinetics, we have been able to address three key questions concerning the use of TFE. First, does TFE perturb the folding pathway? Second, can the observed changes in the rate of folding and unfolding in TFE be attributed to a change in free energy of a single state? Finally, can TFE be used to infer information on secondary structure formation in the transition state? Protein engineering experiments on FKBP12, coupled with folding and unfolding experiments in 0% and 9.6% TFE, conclusively show that TFE does not perturb the folding pathway of this protein. Our results also suggest that the changes in folding and unfolding rates observed in 9.6% TFE are due to a global effect of TFE on the protein, rather than the stabilization of any elements of secondary structure in the transition state. Thus, studies with TFE and other co-solvents can be accurately interpreted only when combined with other techniques.  相似文献   

18.
R E Martenson  J Y Park  A L Stone 《Biochemistry》1985,24(26):7689-7695
Four sequential peptides (sequences 1-63, 64-95, 96-128, and 129-168) derived from rabbit myelin basic protein by thrombic cleavage were examined by low-ultraviolet circular dichroism spectroscopy in 0.5 mM tris(hydroxymethyl)aminomethane hydrochloride (pH approximately 7.2) containing 0-92% trifluoroethanol (TFE). In the absence of the alcohol, all of the peptides contained a significant amount (17-29%) of beta-structure. In the presence of relatively low concentrations (up to 30%) of TFE, all of the peptides except 96-128 adopted considerable alpha-helix (16-33%). This involved a transition from the beta-structure in peptide 1-63 and transitions from the nonordered structure in peptides 1-63, 64-95, and 129-168. Furthermore, additional alpha-helix formed in peptide 1-63 between 30% and 92% TFE at the expense of nonordered structure, whereas the alpha-helix formation above 50% TFE in peptide 129-168 resulted largely from a beta-structure----alpha-helix transition. With the exception of the 129-168 peptide, approximately 65-100% of the maximum level of beta-structure persisted throughout the entire range of TFE concentration. In the case of peptide 129-168, however, most of the beta-structure was converted to alpha-helix and nonordered structure at 75% TFE. While the present results support our previous assignments of beta-structure- and alpha-helix-forming regions to specific amino acid sequences of the basic protein, they also demonstrate that the beta-structure----alpha-helix transitions evidenced at various concentrations of TFE were influenced to a considerable degree by the length of the peptide, presumably due to the presence or absence of interactions between noncontiguous portions of the myelin basic protein polypeptide chain.  相似文献   

19.
Although the formation of an alpha-helix or partial unfolding of proteins has been suggested to be important for amyloid fibrils to form in alcohols, the exact mechanism involved remains elusive. To obtain further insight into the development of amyloid fibrils, we used a 22-residue peptide, K3, corresponding to Ser20 to Lys41 of intact beta2-microglobulin. Although K3 formed an alpha-helix at high concentrations of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) in 10 mM HCl (pH approximately 2), the helical content was not high, indicating a low preference to do so. The partly alpha-helical conformation was converted with time into a highly ordered beta-sheet with a fibrillar morphology as revealed by atomic force microscopy. Importantly, the TFE and HFIP-induced fibrillation exhibited a concentration dependence with a maximum at approximately 20 and approximately 10% (v/v), respectively, slightly below the concentrations at which these alcohols form dynamic clusters. Focusing on the similarity of the effects of alcohol on proteins with those of sodium dodecyl sulfate (SDS), we examined the effects of SDS on K3. SDS also induced fibrils to form with a maximum at approximately 4 mM, slightly below the critical micelle concentration. These results indicate that, with an increase in the concentration of hydrophobic cosolvent (TFE, HFIP, or SDS), a delicate balance of decreasing hydrophobic interactions and increasing polar interactions (i.e. H-bonds) in and between peptides leads to the formation of ordered fibrils with a bell-shaped concentration dependence.  相似文献   

20.
The compact intermediate of the pea lectin found to exist at pH 2.4 was treated with low (PEG-400), medium (PEG-4000) and high (PEG-20,000) molecular weight PEGs. The changes occurring in the secondary structure of the protein were monitored by CD spectropolarimetry in the far-UV range, intrinsic fluorescence was used as a probe to observe the changes in the tertiary structure which is reflected by the changes in the tryptophan environment, further ANS binding studies were made to know the extent of exposure of the hydrophobic patches which is again indicative of the overall changes occurring in the tertiary structure of the protein. It was found that the three PEGs altered the secondary as well as tertiary structure of the pH 2.4 intermediate leading to the formation of three different intermediates. The intermediates were found to have non-native secondary structure as well as non-native tertiary structure. The intermediate formed by the action of PEG-400 was due to the induction of secondary and tertiary structure while the intermediates formed under the influence of PEG-4000 and PEG-20,000 were due to loss in secondary structure and rearrangement in tertiary structure. Also the ANS binding studies showed the absence of any MG or MG-like structures formed in the folding /unfolding pathway induced by PEGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号