首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological basis for senescence symptoms induced by spraying attached primary leaves of bean plant (Phaseolus vulgaris L. cv. Brittlewax) with silicone oil emulsions was investigated. It was found that chlorophyll levels declined significantly between 24 and 48 h after spraying, whereas neither protein levels nor respiration rates were affected over a 7-day period. Rates of photosynthesis and reducing sugar levels in silicone-sprayed leaves were however significantly reduced after 1 and 24 h respectively. These responses were obtained using plants grown under low stress controlled environment conditions. By contrast, leaves on greenhouse plants did not senesce in response to silicone sprays. A possible mechanism of silicone oil action based on selective leaf penetration and inhibition of photosynthesis is postulated.  相似文献   

2.
Aharoni N 《Plant physiology》1978,62(2):224-228
Levels of gibberillins (GAs) and of abscisic acid (ABA) in attached leaves of romaine lettuce (Lactuca sativa L.) declined as the leaf became older. The time course of changes in hormone levels, determined in detached lettuce leaves kept in darkness, revealed that a sharp decline in GAs accompanied by a moderate rise in ABA occurred before the onset of chlorophyll degradation. As senescence advanced, no GAs could be detected and a considerable rise of ABA was observed. A similar sequence of hormonal modifications, but more pronounced, was observed in the course of accelerated senescence induced by either Ethephon or water stress. When kinetin or GA3 was applied to detached leaves, the loss of chlorophyll and the rise in ABA were reduced. Bound GAs were detected in senescent leaves. They were not found in the kinetin-treated leaves, which contained a relatively high level of free GAs. The results suggest that senescence in detached romaine lettuce leaves is connected with a depletion of free GAs and cytokinins, which is thereafter followed by a great surge in ABA.  相似文献   

3.
Excised rice (Oryza sativa L. cv. Ratna) leaves were used to compare the changes in the levels of various biochemical intermediates and enzyme activities during senescence in turgid and water-stressed conditions. Chlorophyll, total protein and soluble protein content decreased but α-amino nitrogen content increased during the senescence of turgid leaves. In the leaves subjected to water stress, these changes were accelerated, the acceleration being greater with higher degree of water stress. Starch, soluble sugars, total carbohydrates and non-reducing sugar content decreased during senescence of turgid leaves. Water stress accelerated the changes in the levels of starch and non-reducing sugar, but the changes in the levels of soluble sugars and total carbohydrates were retarded. Reducing sugar content increased at first and then decreased in the turgid leaves, and water stress accelerated the change. The decline in the catalase activity and the increase in the peroxidase activity with time was faster in the water-stressed leaves than in the turgid leaves. Acid inorganic pyrophosphatase activity increased, but alkaline inorganic pyrophosphatase activity decreased during the senescence of turgid leaves, and such changes were accelerated by water stress. The results suggest that water stress does not accelerate all the processes connected with leaf senescence.  相似文献   

4.
Contact with hydrophobic silicones frequently leads to protein denaturation. However, it is demonstrated that albumin in water-in-silicone oil emulsions retains its native structure in the presence of a functional, triethoxysilyl-terminated silicone polymer, TES-PDMS. Both HSA and TES-PDMS were essential for the formation of stable water-in-silicone oil emulsions: attempts to generate stable emulsions using independently either the protein or the functionalized silicone as a surfactant failed. Confocal microscopy indicated that the human serum albumin (HSA) preferentially adsorbed at the oil/water interface, even in the presence of another protein (glucose oxidase). A variety of experiments demonstrated that the hydrolysis of the Si-OEt groups on the functional silicone occurred only to a limited extent, consistent with the absence of a covalent linkage between the silicone and protein, or of cross-linked silicones at the interface. The fluorescence spectra of HSA extracted from the emulsions, front-faced fluorescence experiments on the HSA/silicone emulsion itself, and HSA/salicylate binding studies all demonstrated that the stability of the water/oil interface decreased as the protein began to unfold: unfolding of the protein in the emulsion was slower than in aqueous solution. The experimental evidence indicated that the interaction between HSA and TES-PDMS is not associated with either homomolecular (HSA/HSA; TES-PDMS/TES-PDMS) interactions or with covalent linkage between two the polymers. Rather, the data is consistent with the direct binding of unhydrolyzed Si(OEt) 3 groups to native HSA. The nature of these interactions is discussed.  相似文献   

5.
6.
Decapitation of Nicotiana rustica L. plants above a single senescent leaf induced regreening, which was promoted by cytokinin treatment. Regreening required low light. The decline in leaf protein content and increase in protease activity seen during senescence were reversed on regreening. Western blotting showed that light-harvesting chlorophyll a/b-binding protein declined considerably during senescence, but on regreening it increased back to the levels seen in green leaves. NADPH-protochlorophyllide oxidoreductase (POR) was found by Western blotting at high levels in etiolated cotyledons, but at low levels in green leaves and not at all in senescent leaves. However, POR reappeared in regreening leaves, and cytokinin accelerated its increase.  相似文献   

7.
Subvisible particles in formulations intended for parenteral administration are of concern in the biopharmaceutical industry. However, monitoring and control of subvisible particulates can be complicated by formulation components, such as the silicone oil used for the lubrication of prefilled syringes, and it is difficult to differentiate microdroplets of silicone oil from particles formed by aggregated protein. In this study, we demonstrate the ability of flow cytometry to resolve mixtures comprising subvisible bovine serum albumin (BSA) aggregate particles and silicone oil emulsion droplets with adsorbed BSA. Flow cytometry was also used to investigate the effects of silicone oil emulsions on the stability of BSA, lysozyme, abatacept, and trastuzumab formulations containing surfactant, sodium chloride, or sucrose. To aid in particle characterization, the fluorescence detection capabilities of flow cytometry were exploited by staining silicone oil with BODIPY 493/503 and model proteins with Alexa Fluor 647. Flow cytometric analyses revealed that silicone oil emulsions induced the loss of soluble protein via protein adsorption onto the silicone oil droplet surface. The addition of surfactant prevented protein from adsorbing onto the surface of silicone oil droplets. There was minimal formation of homogeneous protein aggregates due to exposure to silicone oil droplets, although oil droplets with surface-adsorbed trastuzumab exhibited flocculation. The results of this study demonstrate the utility of flow cytometry as an analytical tool for monitoring the effects of subvisible silicone oil droplets on the stability of protein formulations.  相似文献   

8.
Mechanism of monocarpic senescence in rice   总被引:15,自引:1,他引:14       下载免费PDF全文
During grain formation stage (90 to 110 days), the youngest flag leaf of rice (Oryza sativa L. cv. Jaya) remained metabolically most active (as indicated by cellular constituents and enzyme activities) and the third leaf the least active. At the grain development stage (110 to 120 days) the above pattern of age-related senescence of the flag leaf completely changed and it senesced at a faster rate than the second leaf which remained metabolically active even up to grain maturation time (120 to 130 days), when both the flag and the third leaf partially senesced. Removal of any leaf temporarily arrested senescence of the remaining attached leaves, that of flag leaf did not hasten senescence of the second leaf, while that of either the second or the third accelerated senescence of the flag. Removal of the inflorescence after emergence or foliar treatment of intact plant with kinetin equally delayed senescence and produced an age-related, sequential mode of senescence or leaves. Both translocation and retention of 32P by the flag leaf were maximum at the time of grain formation and that by the second leaf was maintained even up to grain maturation time. The induction of senescence of the flag leaf was preceded by a plentiful transport of 32P to the grains. Kinetin treatment decreased the transport of 32P, prolonged its duration, and almost equally involved all of the leaves in this process. The pattern of senescence of isolated leaf tips was similar to that of attached leaves. The level of endogenous abscisic acid-like substance(s) maintained a close linearity with the senescence behavior of the leaves of intact and defruited plants during aging, and the rise in abscisic acid in the flag leaf was also preceded by higher 32P transport to the grains.  相似文献   

9.
During leaf senescence, macromolecule breakdown occurs and nutrients are translocated to support growth of new vegetative tissues, seeds, or other storage organs. In this study, we determined the fatty acid levels and profiles in Arabidopsis (Arabidopsis thaliana), Brachypodium distachyon, and switchgrass (Panicum virgatum) leaves during natural senescence. In young leaves, fatty acids represent 4% to 5% of dry weight and approximately 10% of the chemical energy content of the leaf tissues. In all three species, fatty acid levels in leaves began to decline at the onset of leaf senescence and progressively decreased as senescence advanced, resulting in a greater than 80% decline in fatty acids on a dry weight basis. During senescence, Arabidopsis leaves lost 1.6% of fatty acids per day at a rate of 2.1 μg per leaf (0.6 μg mg−1 dry weight). Triacylglycerol levels remained less than 1% of total lipids at all stages. In contrast to glycerolipids, aliphatic surface waxes of Arabidopsis leaves were much more stable, showing only minor reduction during senescence. We also examined three Arabidopsis mutants, acx1acx2, lacs6lacs7, and kat2, which are blocked in enzyme activities of β-oxidation and are defective in lipid mobilization during seed germination. In each case, no major differences in the fatty acid contents of leaves were observed between these mutants and the wild type, indicating that several mutations in β-oxidation that cause reduced breakdown of reserve oil in seeds do not substantially reduce the degradation of fatty acids during leaf senescence.  相似文献   

10.
Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera), by stably expressing a GFP (green fluorescent protein) reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.  相似文献   

11.
The Role of Abscisic Acid in Senescence of Detached Tobacco Leaves   总被引:2,自引:0,他引:2  
The role of abscisic acid in the regulation of senescence was investigated in detached tobacco leaves (Nicotiana rustica L.). Leaves senesced in darkness showed a sharp rise in abscisic acid level in the early stage of aging, followed by a rapid decline later. The same trend was found when leaves were aged in light, but the rise in abscisic acid occurred four days later than in darkness. Senescence was slower in light than in darkness, while salt stress accelerated the processes. Leaves treated with kinetin which senesced in light and darkness, did not show an increase in abscisic acid. Application of kinetin led to a transformation from free to bound ABA. These results may indicate that ABA and cytokinin are involved in a trigger mechanism which regulates senescence; the stage at which this trigger is activated determines the rate of senescence.  相似文献   

12.
Chinese flowering cabbage is one of the main leafy vegetables produced in China. They have a rapid leaf yellowing due to chlorophyll degradation after harvest that limits their marketing. In the present study, leaf senescence of the cabbages was manipulated by ethylene and 6-benzyl aminopurine (6-BA) treatment to investigate the correlation of leaf senescence and chlorophyll degradation related to gene expression/activities in the darkness. The patterns of several senescence associated markers, including a typical marker, the expression of senescence-associated gene SAG12, demonstrated that ethylene accelerated leaf senescence of the cabbages, while 6-BA retarded this progress. Similar to the trends of BrSAG12 gene expression, strong activation in the expression of three chlorophyll degradation related genes, pheophytinase (BrPPH), pheophorbide a oxygenase (BrPAO) and red chlorophyll catabolite reductase (BrRCCR), was detected in ethylene treated and control leaves during the incubation, while no evident increase was recorded in 6-BA treated leaves. The overall dynamics of Mg-dechelatase activities in all treatments displayed increasing trends during the senescence process, and a delayed increase in the activities was observed for 6-BA treated leaves. However, chlorophyllase activity as well as the expression of BrChlase1 and BrChlase2 decreased with the incubation in all treatments. Taken together, the expression of BrPPH, BrPAO and BrRCCR, and the activity of Mg-dechelatase was closely associated with the chlorophyll degradation during the leaf senescence process in harvested Chinese flowering cabbages under dark conditions.  相似文献   

13.
A phenanthrene-degrading Mycobacterium sp. strain 6PY1 was grown in an aqueous/organic biphasic culture system with phenanthrene as sole carbon source. Its capacity of degradation was studied during sequential inoculum enrichments, reaching complete phenanthrene degradation at a maximim rate of 7 mg l−1 h−1. Water–oil emulsions and biofilm formation were observed in biphasic cultures after four successive enrichments. The factors influencing interfacial area in the emulsions were: the initial phenanthrene concentration, the initial inoculum size, and the silicone oil volume fraction. The results showed that the interfacial area was mainly dependent on the silicone oil/mineral salts medium ratio and the inoculum size.  相似文献   

14.
《Genomics》2020,112(5):3075-3088
Tobacco (Nicotiana tabacum) is extensively cultivated all over the world for its economic value. During curing and storage, senescence occurs, which is associated with physiological and biochemical changes in postharvest plant organs. However, the molecular mechanisms involved in accelerated senescence due to high temperatures in tobacco leaves during curing need further elaboration. We studied molecular mechanisms of senescence in tobacco leaves exposed to high temperature during curing (Fresh, 38 °C and 42 °C), revealed by isobaric tags for relative and absolute quantification (iTRAQ) for the proteomic profiles of cultivar Bi’na1. In total, 8903 proteins were identified, and 2034 (1150 up-regulated and 1074 down-regulated) differentially abundant proteins (DAPs) were obtained from tobacco leaf samples. These DAPs were mainly involved in posttranslational modification, protein turnover, energy production and conversion. Sugar- and energy-related metabolic biological processes and pathways might be critical regulators of tobacco leaves exposed to high temperature during senescence. High-temperature stress accelerated tobacco leaf senescence mainly by down-regulating photosynthesis-related pathways and degrading cellular constituents to maintain cell viability and nutrient recycling. Our findings provide a valuable inventory of novel proteins involved in senescence physiology and elucidate the protein regulatory network in postharvest organs exposed to high temperatures during flue-curing.  相似文献   

15.
Photosynthetic complexes in the thylakoid membrane of plant leaves primarily function as energy-harvesting machinery during the growth period. However, leaves undergo developmental and functional transitions along aging and, at the senescence stage, these complexes become major sources for nutrients to be remobilized to other organs such as developing seeds. Here, we investigated age-dependent changes in the functions and compositions of photosynthetic complexes during natural leaf senescence in Arabidopsis thaliana. We found that Chl a/b ratios decreased during the natural leaf senescence along with decrease of the total chlorophyll content. The photosynthetic parameters measured by the chlorophyll fluorescence, photochemical efficiency (F v/F m) of photosystem II, non-photochemical quenching, and the electron transfer rate, showed a differential decline in the senescing part of the leaves. The CO2 assimilation rate and the activity of PSI activity measured from whole senescing leaves remained relatively intact until 28 days of leaf age but declined sharply thereafter. Examination of the behaviors of the individual components in the photosynthetic complex showed that the components on the whole are decreased, but again showed differential decline during leaf senescence. Notably, D1, a PSII reaction center protein, was almost not present but PsaA/B, a PSI reaction center protein is still remained at the senescence stage. Taken together, our results indicate that the compositions and structures of the photosynthetic complexes are differentially utilized at different stages of leaf, but the most dramatic change was observed at the senescence stage, possibly to comply with the physiological states of the senescence process.  相似文献   

16.
Leaf senescence results in the recycling of nutrients, thereby providing resources required for growth and reproduction. In this study, the effect of day-length on leaf senescence in eight different Arabidopsis thaliana ecotypes was determined and the relationship between senescence and other morphological and life history traits was analysed. A significant variation in the start and extent of leaf senescence depending on the genetic background and the response to day-length was found. Whereas senescence of early flowering ecotypes was accelerated by long days, no effect of day-length on senescence could be found in late flowering Kas-1 plants. Senescence in the different ecotypes was associated with other traits, such as floral transition, the total number of fruits, the total number of leaves and the maximum chlorophyll content. Plants that bolted early also senesced early, produced fewer leaves, accumulated less chlorophyll, but produced more fruits. The present results indicate that senescence may be a key component in the trade-off between investment in photosynthetic capacity and reproduction. The relationship between senescence and other traits was maintained independent of whether differences in senescence were caused by genetic (ecotype) or environmental (day-length) variation, suggesting that genetic and environmental factors affect these traits through common regulatory pathways.  相似文献   

17.
The difference between drought tolerance of juvenile and mature leaves of the winter-deciduous dwarf shrub bilberry (Vaccinium myrtillus L.) from a northern boreal environment was investigated. It was hypothesised that mature leaves are more drought sensitive than juvenile leaves. Bilberry plants were allowed to dry out by excluding irrigation when leaves were at juvenile and mature stages. Tissue water content decreased at both phenological stages, but the response was more pronounced in the mature leaves. Anthocyanin concentrations increased as the tissue water content decreased, and again this occurred to a greater extent in the mature leaves. Chlorophyll concentrations decreased only marginally at the juvenile stage, while the decrease was significant in the mature leaves. Chlorophyll degradation was enhanced by drought stress. Soluble proteins decreased and protein oxidation increased in the mature leaves, and degradation of oxidised proteins increased in the drought-stressed plants. The results suggest that leaves of bilberry are more sensitive to drought stress at the mature stage, and that drought stress accelerates senescence at the mature stage. The significance of the results is that dry periods during the juvenility of leaves are not as detrimental as they may be later in summer. In addition, the strategy of a winter-deciduous plant is obviously to protect its perennial parts from severe drought by accelerated leaf senescence at the mature stage. Therefore, the deciduous life form may provide an excellent adaptation against drought also in northern ecosystems. The role of anthocyanins in photoprotection under drought stress is also discussed.  相似文献   

18.
Limitations in photosystem function and photosynthetic electron flow were investigated during leaf senescence in two field-grown plants, i.e., Euphorbia dendroides L. and Morus alba L., a summer- and winter-deciduous, shrub and tree, respectively. Analysis of fast chlorophyll (Chl) a fluorescence transients and post-illumination fluorescence yield increase were used to assess photosynthetic properties at various stages of senescence, the latter judged from the extent of Chl loss. In both plants, the yield of primary photochemistry of PSII and the content of PSI remained quite stable up to the last stages of senescence, when leaves were almost yellow. However, the potential for linear electron flow along PSII was limited much earlier, especially in E. dendroides, by an apparent inactivation of the oxygen-evolving complex and a lower efficiency of electron transfer to intermediate carriers. On the contrary, the corresponding efficiency of electron transfer from intermediate carriers to final acceptors of PSI was increased. In addition, cyclic electron flow around PSI was accelerated with the progress of senescence in E. dendroides, while a corresponding trend in M. alba was not statistically significant. However, there was no decrease in PSI activity even at the last stages of senescence. We argue that a switch to cyclic electron flow around PSI during leaf senescence may have the dual role of replenishing the ATP and maintaining a satisfactory nonphotochemical energy quenching, since both are limited by hindered linear electron transfer.  相似文献   

19.
Excised soybean (Glycine max [L.] Merrill) cv Anoka leaf discs tend to remain green even after the corresponding intact leaves have turned yello on fruiting plants. We have found that explants which include a leaf along with a stem segment (below the node) and one or more pods (maintained on distilled H2O) show similar but accelerated leaf yellowing and abscission compared with intact plants. In podded explants excised at pre-podfill, the leaves begin to yellow after 16 days, whereas those excised at late podfill begin to yellow after only 6 days. Although stomatal resistances remain low during the first light period after excision, they subsequently increase to levels above those in leaves of intact plants. Explants taken at mid to late podfill with one or more pods per node behave like intact plants in that pod load does not affect the time lag to leaf yellowing. Explant leaf yellowing and abscission are delayed by removal of the pods or seeds or by incubation in complete mineral nutrient solution or in 4.6 micromolar zeatin. Like chorophyll breakdown, protein loss is accelerated in the explants, but minerals or especially zeatin can retard the loss. Pods on explants show rates and patterns of color change (green to yellow to brown) similar to those of pods on intact plants. These changes start earlier in explants on water than in intact plants, but they can be delayed by adding zeatin. Seed dry weight increased in explants, almost as much as in intact plants. Explants appear to be good analogs of the corresponding parts of the intact plant, and they should prove useful for analyzing pod development and mechanisms of foliar senescence. Moreover, our data suggest that the flux of minerals and cytokinin from the roots could influence foliar senescence in soybeans, but increased stomatal resistance does not seem to cause foliar senescence.  相似文献   

20.
The observed increase of phenolase activity and of its rate of activation during spinach leaf senescence is due to reduced binding of latent phenolase to the thylakoid membranes and not to de novo synthesis. The same amount of phenolase which is active in isolated thylakoid membranes from senescent leaves can be found in the membranes of non-senescent leaves after activation of latent enzyme. Tracer experiments give evidence that one multiple form which is responsible for the bulk activity in senescent leaves, is synthesized before, but not after the onset of senescence, indicating that pre-existing latent phenolase is converted to easily activating forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号