首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiversity of Coral Reefs: What are We Losing and Why?   总被引:2,自引:0,他引:2  
SYNOPSIS. Coral reefs are threatened by numerous anthropogenicimpacts, some of which have already had major effects worldwide.These unique tropical environments harbor a high diversity ofcorals, reef invertebrates, fish and other animals and plants.In most taxa, the species diversity of reef-associated organismsis poorly understood because many of the species have yet tobe collected and described. High coral mortality has been associatedwith natural events such as hurricanes, predator outbreaks andperiods of high temperature, but has also resulted from excessnutrients in sewage and from specific pollutants. Reef coralsand associated organisms are also threatened by the possibilityof global warming which will result in rising sea levels andperiods of increased temperature stress, and which may alsobring increased storm frequency and intensity. Although therecent extensive episodes of coral bleaching in the Caribbeanand eastern Pacific cannot be causally related to global warmingat this time, the close link between bleaching and temperaturesuggests that global warming will result in severe changes incoral assemblages. Major reef destruction has followed outbreaksof the predatory seastar Acanthaster planci in the Pacific.Although this is considered part of a natural disturbance cycle,there are indications that altered land use patterns and reductionof predators on this seastar by human activities may have increasedthe severity of outbreaks. Recreational and commercial use ofreefs has also increased, and has caused extensive damage, especiallynear areas of high population density. One of the most obviousand widespread losses to reef biota is the reduction in fishpopulations from intense overfishing in most reef areas of theworld. Coasts without adequately managed reefs have sufferedintense overfishing for both local and export purposes, to thepoint where the positive effects of fish on those reefs havebeen compromised. The combination of these destructive factorshas altered reefs in all localities, and many that were onceconsidered protected by distance and low population densityare now being exploited as well. On the positive side, improvedunderstanding of ecological processes on reefs combined withconcerted conservation efforts have managed to protect someextensive areas of reef for the future.  相似文献   

2.
Climate change and biological invasion are two of the most important ecological issues. Nezara viridula (SGS) is a good example of an alien species that increased in response to recent land use changes and global warming. The range limit of SGS coincided with the 5 °C isotherm of the mean monthly temperature for January. Since 2000, it has been warm enough for SGS to overwinter successfully outside its original range. Most invaded areas are now either occupied by SGS only or by mixed species of Nezara indicating that SGS is replacing its congeneric species, Nezara antennata, through interspecific mating.SGS population dynamics studies performed during 1961–1965 demonstrated that SGS abundance was density dependent and the independent processes worked alternately during the breeding season and winter. Although global warming would improve the winter survival of SGS adults, population density would be regulated at a new equilibrium specific to the area.Life tables demonstrated that all traits related to reproduction were poorly realized in the 2nd generation that occurs during summer. Heat stress syndrome due to global warming may be becoming apparent in SGS in spite of its subtropical origin. N. antennata may be able to avoid heat stress by aestivation. Whether SGS could continue to have a higher reproductive potential at the cost of heat stress over N. antennata is a significant ecological issue.  相似文献   

3.
Animal populations have undergone substantial declines in recent decades. These declines have occurred alongside rapid, human‐driven environmental change, including climate warming. An association between population declines and environmental change is well established, yet there has been relatively little analysis of the importance of the rates of climate warming and its interaction with conversion to anthropogenic land use in causing population declines. Here we present a global assessment of the impact of rapid climate warming and anthropogenic land use conversion on 987 populations of 481 species of terrestrial birds and mammals since 1950. We collated spatially referenced population trends of at least 5 years’ duration from the Living Planet database and used mixed effects models to assess the association of these trends with observed rates of climate warming, rates of conversion to anthropogenic land use, body mass, and protected area coverage. We found that declines in population abundance for both birds and mammals are greater in areas where mean temperature has increased more rapidly, and that this effect is more pronounced for birds. However, we do not find a strong effect of conversion to anthropogenic land use, body mass, or protected area coverage. Our results identify a link between rapid warming and population declines, thus supporting the notion that rapid climate warming is a global threat to biodiversity.  相似文献   

4.
全球气候变暖影响植物-传粉者网络的研究进展   总被引:1,自引:0,他引:1  
肖宜安  张斯斯  闫小红  董鸣 《生态学报》2015,35(12):3871-3880
植物与传粉者间相互作用,构成了复杂的传粉网络。目前,以气候变化为主要特征的全球变暖对植物-传粉者网络的影响备受关注,概述了近年来这方面研究的几个主要热点问题及其进展,和相关研究方法。并在此基础上,提出了气温持续上升背景下,植物-传粉者网络未来的研究趋势。当前研究的主要热点问题有:(1)气候变暖使植物、传粉者的物候发生变化,并通过影响植物的开花时间和传粉者活动时间,导致两者在物候时间上的不同步。(2)气候变暖导致植物、传粉者的群落结构变化,促使其地理分布向更高纬度和更高海拔扩散,这可能潜在的导致两者空间分布的不匹配。(3)植物和传粉者通过增加或减少其丰富度来响应气候变暖,可能导致传粉网络结构特征发生变化。(4)面对气候变暖导致植物和传粉者间物候和地理分布错配所引发的互作改变、甚至解体,传粉网络可通过自身网络结构及快速进化来缓冲和适应。在今后研究中,以下几个问题值得探讨:1)气候变暖对植物-传粉者网络影响的大时空尺度变异模式。2)多因素协同作用对植物-传粉者网络的影响特征。3)全球气候变暖对植物、传粉者物候匹配性影响的机理。  相似文献   

5.
《植物生态学报》2017,41(10):1060
Aims Global warming is expected to be the strongest in high altitude mountainous areas, which are more ecologically fragile and economically marginalized. The Qinghai-Xizang Plateau is among such areas most vulnerable to global warming, and more than 80% of its population depends on subsistence agriculture. The aim of this study is to understand the impacts of warming on indigenous crop production, which can help to devise better strategies for crop adaptation and food security in this area.Methods A field warming experiment using a facility of free air temperature increase was conducted to simulate the predicted warming level in Caigongtang town, Lhasa City, China. The experiment consisting of two treatments (warmed and non-warmed) was performed using a completely random design with three replicates. An infrared heater (180 cm in length and 20 cm in width) of 1 500 W was suspended 1.5 m above the ground in each warmed plot. In each non-warmed plot, a ‘dummy’ heater of same dimensions was also suspended to mimic the shading effects. The warming treatment was performed from the sown date to the harvest date. We measured dry matter and nitrogen accumulation, partition and translocation of winter wheat (Triticum aestivum) using ‘Shandong 6’ under warming and control treatments.Important findings Results showed that, with 1.1 °C increase in daily mean air temperature during winter wheat growing season, the dry matter accumulation rate at population level from sowing to anthesis stage, grain dry matter partition ratio and contribution of dry matter translocation amount to grain after anthesis were 27.5%, 5.6% and 68.6% higher, respectively, in the warmed plots than those in the non-warmed plots. Meanwhile, warming increased nitrogen accumulation rate at population level of winter wheat. Nitrogen distribution proportions in grain and nitrogen translocation efficiency from vegetative organs to grain after anthesis in the warmed treatment were 6.0% and 5.5% higher than those in the non-warmed treatment, respectively. Compared with non-warmed treatment, warming decreased harvest index by 3.1%, though the difference was not statistically significant. Grain yield, nitrogen uptake efficiency, nitrogen partial factor productivity and nitrogen harvest index were 8.1%, 20.8%, 8.1% and 6.0% higher, respectively, in the warmed plots than those in the non-warmed plots. In conclusion, an increase in daily mean air temperature of about 1.1 °C can enhance plant growth during the pre-anthesis phase by mitigating the low temperature limitation, and accelerate dry matter and nitrogen partition and translocation to the grain after anthesis in winter wheat. These results suggest that warming may benefit winter wheat production through increasing nitrogen use efficiency in high altitude areas.  相似文献   

6.
Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann–Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long‐term (1970–2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low‐elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low‐elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism‐linked ecosystem services may be most affected.  相似文献   

7.
Although growth response functions have previously been developed for lodgepole pine (Pinus contorta Dougl. ex Loud.) populations in British Columbia, new analyses were conducted: (1) to demonstrate the merit of a new local climate model in genecological analysis; (2) to highlight new methods for deriving response functions; and (3) to evaluate the impacts of management options for existing geographically defined seed planning units (SPUs) for reforestation. Results of this study suggest that new methods for anchoring population response functions, and a multivariate approach for incorporating climate variables into a single model, considerably improve the reliability of these functions. These functions identified a small number of populations in central areas of the species distribution with greater growth potential over a wide range of mean annual temperature (MAT). Average productivity of lodgepole pine is predicted to increase (up to 7%) if moderate warming (~2°C MAT) occurs in the next few decades as predicted, although productivity would substantially decline in some SPUs in southern BC. Severe global warming (>3°C MAT) would result in either a drastic decline in productivity or local populations being extirpated in southern SPUs. New deployment strategies using the best seed sources for future reforestation may not only be able to mitigate the negative impact of global warming, but may even be able to increase productivity in some areas.  相似文献   

8.
Despite the amount of research on the consequences of global warming on ecological systems, most studies examine the impact of increases in average temperature. However, there are few studies concerning the role of thermal variability on ecological processes. Based on insect thermal and population ecology, we propose a theoretical framework for organizing the study of the role that thermal mean and variability plays in individual performance, and how it may affect population dynamics. Starting with three predictions of global warming scenarios, we develop null models of the expected changes in individual physiological performance and population dynamics. Ecological consequences in each scenario may range from simple changes in performance to drastic changes in population fluctuations and geographic ranges. In particular, our null models show that potential changes in the intrinsic population growth rate (Rm) will depend on the interaction of mean temperature and thermal variability, and that the net effect of the interaction could be synergistic or antagonistic. To evaluate these null models, we fit performance curves to compiled data from the literature on measurements of Rm at several constant and fluctuating temperatures. The fitted models showed that several of the qualitative characteristics predicted by the null model may be found in the fitted curves. We expect that this framework will be useful as a guide to study the influence of thermal changes on the dynamics of natural populations. Synthesis Despite the common assertion that global warming impacts depend on not only the mean temperatures but also on thermal variability, theoretical approaches to explain how the interaction of thermal mean and variability determines fitness are lacking. Here we propose a framework for studying the role of thermal mean and variability on individual performance and population dynamics. We developed null models that show how changes in the intrinsic population growth rate (Rm) will depend on the interaction of mean temperature and thermal variability, and that the net effect could be synergistic or antagonistic. We expect that this framework will be useful to study the influence of thermal changes on natural populations.  相似文献   

9.
With climate warming, a widespread expectation is that events in spring, such as flowering, bird migrations, and insect bursts, will occur earlier because of increasing temperature. At high latitudes, increased ocean temperature is suggested to advance the spring phytoplankton bloom due to earlier stabilization of the water column. However, climate warming is also expected to cause browning in lakes and rivers due to increases in terrestrial greening, ultimately reducing water clarity in coastal areas where freshwater drain. In shallow areas, decreased retention of sediments on the seabed will add to this effect. Both browning and resuspension of sediments imply a reduction of the euphotic zone and Sverdrup's critical depth leading to a delay in the spring bloom, counteracting the effect of increasing temperature. Here, we provide evidence that such a transparency reduction has already taken place in both the deep and shallow areas of the North Sea during the 20th century. A sensitivity analysis using a water column model suggests that the reduced transparency might have caused up to 3 weeks delay in the spring bloom over the last century. This delay stands in contrast to the earlier bloom onset expected from global warming, thus highlighting the importance of including changing water transparency in analyses of phytoplankton phenology and primary production. This appears to be of particular relevance for coastal waters, where increased concentrations of absorbing and scattering substances (sediments, dissolved organic matter) have been suggested to lead to coastal darkening.  相似文献   

10.
  • The impact of global warming on seed dormancy loss and germination was investigated in Alliaria petiolata (garlic mustard), a common woodland/hedgerow plant in Eurasia, considered invasive in North America. Increased temperature may have serious implications, since seeds of this species germinate and emerge at low temperatures early in spring to establish and grow before canopy development of competing species.
  • Dormancy was evaluated in seeds buried in field soils. Seedling emergence was also investigated in the field, and in a thermogradient tunnel under global warming scenarios representing predicted UK air temperatures through to 2080.
  • Dormancy was simple, and its relief required the accumulation of low temperature chilling time. Under a global warming scenario, dormancy relief and seedling emergence declined and seed mortality increased as soil temperature increased along a thermal gradient. Seedling emergence advanced with soil temperature, peaking 8 days earlier under 2080 conditions.
  • The results indicate that as mean temperature increases due to global warming, the chilling requirement for dormancy relief may not be fully satisfied, but seedling emergence will continue from low dormancy seeds in the population. Adaptation resulting from selection of this low dormancy proportion is likely to reduce the overall population chilling requirement. Seedling emergence is also likely to keep pace with the advancement of biological spring, enabling A. petiolata to maintain its strategy of establishment before the woodland canopy closes. However, this potential for adaptation may be countered by increased seed mortality in the seed bank as soils warm.
  相似文献   

11.
Populations at the edge of species distributions are especially vulnerable to climate change. Genetic changes as well as modification of their population structure are expected as reactions to global warming. Atlantic salmon ( Salmo salar ) inhabiting south France has been chosen as a model for studying the effect of global warming in marginal populations during the last 15 years. Increased gene flow between neighboring populations and dichotomy of maturation age between sexes have been identified as two main population changes significantly associated with high values of the North Atlantic Oscillation index, a global climate indicator. Although occurrence of isolated populations in each river (or even tributary) is a paradigm for this species, at least in northern areas, increased gene flow between rivers is forecasted as long as climate warming increases, favoring metapopulations at regional level.  相似文献   

12.
European forests have a prominent role in the global carbon cycle and an increase in carbon storage has been consistently reported during the twentieth century. Any further increase in forest carbon storage, however, could be hampered by increases in aridity and extreme climatic events. Here, we use forest inventory data to identify the relative importance of stand structure (stand basal area and mean d.b.h.), mean climate (water availability), and recent climate change (temperature and precipitation anomalies) on forest basal area change during the late twentieth century in three major European biomes. Using linear mixed-effects models we observed that stand structure, mean climate, and recent climatic change strongly interact to modulate basal area change. Although we observed a net increment in stand basal area during the late twentieth century, we found the highest basal area increments in forests with medium stand basal areas and small to medium-sized trees. Stand basal area increases correlated positively with water availability and were enhanced in warmer areas. Recent climatic warming caused an increase in stand basal area, but this increase was offset by water availability. Based on recent trends in basal area change, we conclude that the potential rate of aboveground carbon accumulation in European forests strongly depends on both stand structure and concomitant climate warming, adding weight to suggestions that European carbon stocks may saturate in the near future.  相似文献   

13.
1.  Migrant bird populations are declining and have been linked to anthropogenic climate change. The phenology mismatch hypothesis predicts that migrant birds, which experience a greater rate of warming in their breeding grounds compared to their wintering grounds, are more likely to be in decline, because their migration will occur later and they may then miss the early stages of the breeding season. Population trends will also be negatively correlated with distance, because the chances of phenology mismatch increase with number of staging sites.
2.  Population trends from the Palaearctic (1990–2000) and Nearctic (1980–2006) were collated for 193 spatially separate migrant bird populations, along with temperature trends for the wintering and breeding areas. An index of phenology mismatch was calculated as the difference between wintering and breeding temperature trends.
3.  In the Nearctic, phenology mismatch was correlated with population declines as predicted, but in the Palaearctic, distance was more important. This suggests that differential global climate change may be responsible for contributing to some migrant species' declines, but its effects may be more important in the Nearctic.
4.  Differences in geography and so average migration distance, migrant species composition and history of anthropogenic change in the two areas may account for the differences in the strength of the importance of phenology mismatch on migrant declines in the Nearctic and Palaearctic.  相似文献   

14.
全球变暖与陆地生态系统研究中的野外增温装置   总被引:9,自引:0,他引:9       下载免费PDF全文
由于化石燃料燃烧和森林砍伐等人类活动引起的地球大气层中温室气体(主要是二氧化碳)的富集已导致全球平均温度在20世纪升高了0.6 ℃,并将在本世纪继续上升1.4~5.8 ℃。这种地质历史上前所未有的全球变暖将对陆地植物和生态系统产生深远影响,并通过全球碳循环的改变反馈于全球气候变化。作为全球变化生态学的主要研究方法之一,生态系统增温实验能够为生态模型提供参数估计和模型验证。然而由于在世界各地使用的增温装置不同,使得各个生态系统之间的结果比较和整合难以实施,增加了模型预测的不确定性。该文通过比较几种常见的野外增温装置在模拟全球变暖情形时的优缺点,指出利用不同增温装置进行全球变暖研究中应注意的一些问题;同时探讨了全球变暖控制实验研究中的一些关键性的科学问题。  相似文献   

15.
The salient feature of anthropogenic climate change over the last century has been the rise in global mean temperature. However, global mean temperature is not used as an explanatory variable in studies of population‐level response to climate change, perhaps because the signal‐to‐noise ratio of this gross measure makes its effect difficult to detect in any but the longest of datasets. Using a population of Leach's storm‐petrels breeding in the Bay of Fundy, we tested whether local, regional, or global temperature measures are the best index of reproductive success in the face of climate change in species that travel widely between and within seasons. With a 56‐year dataset, we found that annual global mean temperature (AGMT) was the single most important predictor of hatching success, more so than regional sea surface temperatures (breeding season or winter) and local air temperatures at the nesting colony. Storm‐petrel reproductive success showed a quadratic response to rising temperatures, in that hatching success increased up to some critical temperature, and then declined when AGMT exceeded that temperature. The year at which AGMT began to consistently exceed that critical temperature was 1988. Importantly, in this population of known‐age individuals, the impact of changing climate was greatest on inexperienced breeders: reproductive success of inexperienced birds increased more rapidly as temperatures rose and declined more rapidly after the tipping point than did reproductive success of experienced individuals. The generality of our finding that AGMT is the best predictor of reproductive success in this system may hinge on two things. First, an integrative global measure may be best for species in which individuals move across an enormous spatial range, especially within seasons. Second, the length of our dataset and our capacity to account for individual‐ and age‐based variation in reproductive success increase our ability to detect a noisy signal.  相似文献   

16.

Background

Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems.

Methodology/Principal Findings

We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis.

Conclusions/Significance

Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our results illustrate the broader phenomenon that coupling of temperature dependent reactions may in some situations strongly alter overall effects of temperature on ecological processes.  相似文献   

17.
模拟增温引发的早春冻害:以岷江冷杉为例   总被引:1,自引:0,他引:1  
以全球变暖为主要特征的全球气候变化已经并正在改变着陆地生态系统的结构和功能.现存植被与环境间的关系是经过漫长自然选择而形成的,因此植物物候变化可能会影响物种与环境间的相互关系.采用开顶式生长室(Open-top chamber,OTC)和移地试验(transposing of surface soil with vegetation,TSSV)模拟增温的方法,研究了川西亚高山岷江冷杉幼苗物候和冻害对模拟增温的短期响应.结果表明,生长季中OTC内日平均气温较对照增加2.2 ℃,高海拔(3 200 m)比低海拔(2 600 m)日平均温度低2.5 ℃.在两种研究方法下,温度升高都使岷江冷杉芽开放提前,休眠期推迟,生长季延长.温度升高使岷江冷杉幼苗新生芽遭受严重的冻害.结果表明,在未来全球气候变化的背景下,高海拔物种遭受早春冻害的可能性大.  相似文献   

18.
Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.  相似文献   

19.
Although long‐distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black‐throated blue warbler (Setophaga caerulescens), a double‐brooded long‐distance migrant, we used Pradel models to analyze 25 years of mark–recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late‐season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black‐throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species.  相似文献   

20.
Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non‐native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non‐native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non‐native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non‐native species, implicating phenology as a potential trait associated with the successful establishment of non‐native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non‐natives are hypothesised to promote invasion success and population persistence, potentially benefiting non‐native over native species under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号