首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the short-day plant, strawberry (Fragaria ananassa Duch.), polyamines (putrescine, spermidine and spermine), conjugated spermidine (water-insoluble compounds) and bound amines (putrescine, spermidine, phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine) accumulated in the shoot tips during floral induction and before floral emergence. Different associations of free amines and conjugated amines were observed during floral induction, as compared with the reproductive phase. During the whole period of floral development, phenylethylamine (an aromatic amine) was the predominant amine, representing 80 to 90% of the total free amine pool. Phenylethylamine conjugates (water-insoluble compounds) were the predominant amides observed prior to fertilization. These substances decreased drastically after fertilization. In vegetative shoot tips from plants grown continously under long days, free polyamines (putrescine, spermidine) and bound polyamines (putrescine, spermidine) were low and no change was observed. Free amines (spermine and phenylethylamine), bound aromatic amines (phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine), conjugated spermidine and phenylethylamine did not appear. Male-sterile flowers were distinguished by their lack of conjugated spermidine and phenylethyalamine and by a decrease in free phenylethylamine. In normal and sterile strawberry plants -DL-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ornithine decarboxylase (ODC), caused inhibition of flowering and free and polyamine conjugates. When putrescine was added, polyamine titers and flowering were restored. A similar treatment with -DL-difluoromethylarginine (DFMA), a specific, irreversible inhibitor of arginine decarboxylase (ADC), did not affect flowering and polyamine titers. These results suggest that ornithine decarboxylase (ODC) and polyamines are involved in regulating floral initiation in strawberry. The relationship between polyamines, aromatic amines, conjugates, floral initiation and male sterility is discussed.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - Put putrescine - Spd spermidine - Spm spermine - Phen phenylethylamine - 3H4M Phen 3-hydroxy, 4-methoxyphenylethylamine  相似文献   

2.
We have studied the enzymes and genes involved in the biosynthesis of putrescine, spermidine, and spermine in Saccharomyces cerevisiae. Mutants have been isolated with defects in the biosynthetic pathway as follows: spe10 mutants, deficient in ornithine decarboxylase, cannot make putrescine, spermidine, or spermine; spe2 mutants, lacking S-adenosylmethionine decarboxylase, cannot make spermidine or spermine; spe3 mutants, lacking putrescine aminopropyltransferase, cannot make spermidine or spermine; and spe4 and spe40 mutants, lacking spermidine aminopropyltransferase, contain no spermine and permit growth of spe10 mutants. Studies with these mutants have shown that in yeast: 1) polyamines are absolutely required for growth; 2) putrescine is formed only by decarboxylation or ornithine; 3) two separate aminopropyltransferases are required for spermidine and spermine synthesis; 4) spermine and spermidine are important in the regulation of ornithine decarboxylase and the amines exert this control by a posttranslational modification of the enzyme; and 5) spermidine or spermine is essential for sporulation of yeast and for the maintenance of the double-stranded RNA killer plasmid. Recent studies in amine-deficient mutants of Escherichia coli have shown an important role of the polyamines in protein synthesis in vivo.  相似文献   

3.
4.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

5.
High potassium (50 mM) depolarization induces a rapid (less than 15 sec) increase in the levels of the polyamines putrescine, spermidine and spermine and their rate-regulating synthetic enzyme ornithine decarboxylase in synaptosomes from rat cerebral cortex. The ornithine decarboxylase inhibitor alpha-difluoromethylornithine blocked the K+-stimulated increase in enzyme activity and polyamines and also suppressed the increase in 45Ca2+ influx and efflux and the Ca2+-dependent release of GABA and norepinephrine. Added putrescine attenuated or negated the effects of alpha-difluoromethylornithine. These results suggest that enhanced polyamine synthesis is required for potassium depolarized stimulation of synaptic function.  相似文献   

6.
The main free amines identified during growth and development of grapevine microcuttings of rootstock 41 B, (Vitis vinifera cv. Chasselas × Vitis berlandieri) cultivated in vitro were agmatine, putrescine, spermidine, spermine, diaminopropane and tyramine (an aromatic amine). Amine composition differed according to tissue, with diaminopropane the major polyamine in the apical parts, internodes and leaves. Putrescine predominated in the roots. There was also a decreasing general polyamine and specific tyramine gradient along the stem from the top to the bottom. Conjugated amines were only found in roots. The application of exogenous amines (agmatine, putrescine, spermidine, tyramine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these amines can be growth limiting. Diaminopropane (the product of oxidation of spermidine or spermine by polyamine oxydases) strongly inhibited microcutting growth and development. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), led to inhibition of microcutting development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition indicating that polyamines are involved in regulating the growth and development of grapevine microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis from ornithine decarboxylase (ODC), had no effect on microcutting development and growth. We propose that ADC regulates putrescine biosynthesis during microcutting development.  相似文献   

7.
Polyamine transport,accumulation, and release in brain   总被引:3,自引:0,他引:3  
Cycling of polyamines (spermine and spermidine) in the brain was examined by measuring polyamine transport in synaptic vesicles, synaptosomes and glial cells, and the release of spermine from hippocampal slices. It was found that membrane potential-dependent polyamine transport systems exist in synaptosomes and glial cells, and a proton gradient-dependent polyamine transport system exists in synaptic vesicles. The glial cell transporter had high affinities for both spermine and spermidine, whereas the transporters in synaptosomes and synaptic vesicles had a much higher affinity for spermine than for spermidine. Polyamine transport by synaptosomes was inhibited by putrescine, agmatine, histidine, and histamine. Transport by glial cells was also inhibited by these four compounds and additionally by norepinephrine. On the other hand, polyamine transport by synaptic vesicles was inhibited only by putrescine and histamine. These results suggest that the polyamine transporters present in glial cells, neurons, and synaptic vesicles each have different properties and are, presumably, different molecular entities. Spermine was found to be accumulated in synaptic vesicles and was released from rat hippocampal slices by depolarization using a high concentration of KCl. Polyamines, in particular spermine, may function as neuromodulators in the brain.  相似文献   

8.
The role of endogenous polyamines in the control of dark-inducedsenescence of detached rice leaves was investigated by quantitatinglevels of various polyamines by HPLC. Putrescine, spermidineand spermine were all present throughout senescence. Neithercadaverine nor 1,3-diaminopropane was detected. During dark-inducedsenescence, there was a marked decrease in levels of putrescineand an increase in those of spermidine and spermine. The rateof production of ethylene increased markedly upon excision ofleaves. -Difluoromethylarginine (DFMA) and -difluoromethylornithine(DFMO) caused a reduction in levels of putrescine, yet had noeffect on levels of spermidine and spermine. Neither DFMA norDFMO had any effect on senescence or on the production of ethylene.Treatment with dicyclohexylamine (DCH) and methylglyoxal bis-(guanylhydrazone)(MGBG) reduced levels of spermine and increased those of putrescinein detached leaves. After treatment with DCH or MGBG, both senescenceand the production of ethylene were significantly promoted.The current results suggest that endogenous polyamines may notplay a significant role in the control of dark-induced senescenceof rice leaves. This conclusion is supported by the furtherobservations that (a) benzyladenine, which is known to retardsenescence, decreased levels of putrescine but had no effecton those of spermidine and spermine; and (b) ABA, which promotedsenescence, increased levels of putrescine and had no effecton those of spermidine and spermine. (Received March 30, 1991; Accepted June 27, 1991)  相似文献   

9.
Abstract: The influence of putrescine, spermidine, spermine, and some aliphatic α,ω-diamines on the uptake of neurotransmitters by rat forebrain synaptosomes was investigated. Choline uptake was most effectively inhibited by spermine (IC50= 0.22 m M ), less so by spermidine (IC50= 4.0 m M ), but not by putrescine (IC50 > 100 m M ). At 10 m M, 1,3-diaminopropane, cadaverine, and 1,8-diaminooctane all inhibited choline uptake by 50% or more. Spermine and spermidine inhibited the uptake of dopamine with IC50 values of 2.7 and 2.2 m M , respectively. Putrescine was only slightly inhibitory (IC50= 17.3 m M ) and the other diamines were inactive. The uptake of γ-aminobutyrate (GABA) was only slightly inhibited (15–40%) by the polyamines at 10 m M . With the exception of inhibition of glycine uptake by 1,8-diaminooctane (60%) and of glutamate uptake by cadaverine (35%) none of the polyamines, tested at 10 m M , affected the uptake of adenosine, glutamate, and glycine significantly. A possible modulatory role for polyamines in synaptic transmission through interaction by negatively charged groups of the synaptic membrane with the polycationic compounds is discussed.  相似文献   

10.
Atlantic salmon (Salmo salar) were treated with 17- estradiol to induce vitellogenin synthesis in liver. This led to an increase in liver wet weight and total DNA. After incubation with micrococcal nuclease (EC 3.1.31.1) less soluble chromatin was obtained from nuclei of the estradiol treated than the control fish, but active gene regions were solubilized by the nuclease. Thus, in the estradiol treated fish soluble mononucleosomes contained hybridizable vitellogenin gene sequences. As a result of estradiol treatment the content in total liver of putrescine rose 3-fold, that of spermidine 2-fold, while spermine was unchanged. In muscle no significant changes were observed. The regulatory functions of polyamines during gene expression were investigated by binding (14C)spermine to isolated liver nuclei depleted of endogenous polyamines. The number of binding sites was higher in nuclei of estradiol treated than control fish. (14C)spermine associated preferentially with micrococcal nuclease insensitive chromatin. Thus, the high content of putrescine and spermidine in liver supported the view of polyamine accumulation in proliferating tissues. The preferential binding to condensed chromatin indicated a stabilizing effect of polyamines on the organization of inactive chromatin structures.Abbreviations MNase micrococcal nuclease - PMSF phenylmethylsulfonylfluoride  相似文献   

11.
Chromatin prepared from maize shoot tips using as extraction medium including quinacrine as an inhibitor of polyamine oxidase, contained 1.6 pmol spermidine g DNA-1 and 14.8 pmol spermine g DNA-1, respectively. This represented 0.1% spermidine and 3.7% spermine as compared with the content of those amines in the whole tissue. No putrescine was detectable in the chromatin preparation. When contamination of polyamines in the preparation was determined by the addition of labeled polyamines to the extraction medium, the ratio of the polyamines in the preparation to those in the extraction medium was 0.1% spermidine and 0.7% spermine, respectively. Spermine in the chromatin preparation was almost fully solubilized by a DNase-treatment, but spermidine was less easily solubilized. Most of the spermine associated with the chromation is chromatin-specific.  相似文献   

12.
Summary Treatment with -difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase (ODC), depletes the putrescine and spermidine content, and reduces the growth rate of Ehrlich ascites tumor cells.The addition of putrescine, which is the immediate precursor of spermidine, promptly replenished the intracellular putrescine and spermidine pools and completely reversed the antiproliferative effect of DFMO. A sequential accumulation of spermine, spermidine and putrescine was observed.1,3-diaminopropane, a lower homolog of putrescine, did not reverse the antiproliferative effect of DFMO, despite its structural similarity and identical positive charge. By inhibiting remaining ODC activity, resistant to 5 mM DFMO, and possibly by inhibiting spermine synthase activity, 1,3-diaminopropane produced a further decrease in total polyamine content by reducing the spermine content.Mg2+, which can replace putrescine in many in vitro reactions, completely lacked the capacity to reverse the antiproliferative effect of putrescine and spermidine deficiency.Abbreviations DFMO -difluoromethylornithine - ODC ornithine decarbxylase  相似文献   

13.
Labelled putrescine is converted to spermidine and spermine in the retina of both the goldfish and of the rat, but the bulk remains as putrescine and spermidine in the goldfish retina whereas the bulk is present as spermine in the rat retina. Labelled spermidine is converted to spermine and to putrescine in the retina of both species, most remaining as spermidine in the goldfish retina whereas most is converted to spermine in the rat retina. Labelled spermine is converted to both spermidine and putrescine in the retina of both species with a greater conversion in the goldfish retina than in the rat retina. These results provide direct evidence of the interconversion of putrescine, spermidine and spermine in neural tissue from both fish and mammals and suggest that spermine should not be regarded solely as an end-product of putrescine metabolism but also as a source of spermidine and putrescine.The pattern of distribution of putrescine and the polyamines, spermidine and spermine, in goldfish retina is the reverse of that in rat retina: Putrescine is the most abundant in goldfish retina whereas spermine is most abundant in rat retina suggesting that the individual polyamines are of different importance in the two species.  相似文献   

14.
Histamine, putrescine, spermidine, and spermine in rat tissues and human urine were separated on a CM-cellulose column (0.6 × 10 cm). These amines in the chromatographic eluate were determined by the reactions with o-phthalaldehyde (for histamine), fluorescamine, o-phthalaldehyde-mercaptoethanol, or 2,4,6-trinitrobenzene sulfonate (for putrescine and polyamines). The procedures are rapid and simple when popular instruments are used. The limits of determination by the present method were of the order of 0.1 to 0.2 nmol for histamine and 2 to 4 nmol for putrescine and polyamines.  相似文献   

15.
Following the intracerebroventricular injection into rabbits of spermidine or spermine the highest concentrations were initially found in the caudate nucleus, hypothalamus and medulla. Subsequently there was a rapid decline in the amounts present in the caudate nucleus and hypothalamus and, particularly in the case of spermidine, an increase in the conccntration in the lower brain stem and cervical cord. This pattern of changes is consistent with the amines being redistributed by passage in CSF. Intraventricularly injected putrescine followed the same initial distribution pattern but within 2 days it had been largely converted to spermidine and spermine. Synthesized polyamines accumulated in all the regions examined. The time course of synthesis indicated that spermidine was the precursor of spermine. Spermine was also formed from injected spermidine and vice-versa. These findings concur with the pharmacological and neurotoxic actions of putrescine, spermidine and spermine.  相似文献   

16.
The migration of IEC-6 cells is inhibited when the cells are depleted of polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine (DFMO). Exogenous putrescine, spermidine, and spermine completely restore cell migration inhibited by DFMO. Because polyamines are interconverted during their synthesis and catabolism, the specific role of individual polyamines in intestinal cell migration, as well as growth, remains unclear. In this study, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone)(DEGBG), to block the synthesis of spermidine and spermine from putrescine. We found that exogenous putrescine does not restore migration and growth of IEC-6 cells treated with DFMO plus DEGBG, whereas exogenous spermine does. In addition, the normal distribution of actin filaments required for migration, which is disrupted in polyamine-deficient cells, could be achieved by adding spermine but not putrescine along with DFMO and DEGBG. These results indicate that putrescine, by itself, is not essential for migration and growth, but that it is effective because it is converted into spermidine and/or spermine.  相似文献   

17.
Spermidine belongs to a class of polycationic compounds known as polyamines. Polyamines are known to be involved in a wide range of biological processes but the exact role and contribution of different polyamines to these processes are still not clear. In the present study, we have tried to understand the contribution of triamine spermidine to the growth and development of tobacco by downregulating spermidine synthase gene (SPDS) using RNA interference. Down-regulatioin of SPDS gene resulted in decreased spermidine levels and a slight increase in the levels of its precursor, the diamine putrescine and the molecule downstream of Spd, the tetraamine spermine. While the vegetative growth of the transgenics remained largely unaffected, SPDS down-regulation resulted in smaller size of flowers, decreased pollen viability and seed setting, and a reduced and delayed seed germination. When subjected to abiotic stress, the transgenics showed an increased tolerance to salinity and drought conditions owing to a steady intracellular pool of putrescine and spermine. The results not only highlight the importance of spermidine in determining reproductive potential in plants but have also help delineate its function from that of putrescine and spermine.  相似文献   

18.
Capillary zone electrophoresis (CZE) with fluorescence detection was applied to the simultaneous determination of histamine and polyamines including spermine, spermidine, diaminopropane, putrescine, cadaverine, diaminohexane with 4-fluor-7-nitro-2,1,3-benzoxadiazole (NBD-F) as the fluorescent derivatization reagent. The seven NBD-F labeled amines was separated within 200 s using 85 mM phosphate running buffer at pH 3.0. The concentration limits of these amines ranged from 5.1 x 10(-8) M for spermine to 2.1 x 10(-8) M for histamine. The relative standard deviations for migration time and peak height were less than 1.5% and 6.0%, respectively. The method was successfully applied to the analysis of biogenic amines in the lysate of tobacco mesophyll protoplasts, and spermidine and putrescine were detected in the lysate with satisfying recovery.  相似文献   

19.
The product of the UGA4 gene in Saccharomyces cerevisiae, which catalyzes the transport of 4-aminobutyric acid (GABA), also catalyzed the transport of putrescine. The Km values for GABA and putrescine were 0.11 and 0.69 mM, respectively. The UGA4 protein was located on the vacuolar membrane as determined by the effects of bafilomycin A1 and by indirect immunofluorescence microscopy. Uptake of both GABA and putrescine was inhibited by spermidine and spermine, although these polyamines are not substrates of UGA4. The UGA4 mRNA was induced by exposure to GABA, but not putrescine over 12h. The growth of an ornithine decarboxylase-deficient strain was enhanced by putrescine, and both putrescine and spermidine contents increased, when the cells were expressing UGA4. The results suggest that a substantial conversion of putrescine to spermidine occurs in the cytoplasm even though UGA4 transporter exists on vacuolar membranes.  相似文献   

20.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号