首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cocaine is a powerful central nervous stimulant and among the most abused of drugs. Despite decades of efforts, however, no effective pharmacological treatments are available against cocaine addiction or toxic effects. Classical receptor-antagonist therapeutic approaches have not yielded significant effects, although cocaine targets are well known, thus fostering development of alternative therapeutic strategies. Recent evidence indicates that a sensible approach for treatment of cocaine abuse could be to interfere with cocaine pharmacokinetics, i.e. by preventing the drug from reaching the receptors responsible for its biological effects. Administration of cocaine binding antibodies as well as catalytic antibodies and enzymes that hydrolyze cocaine represent potential alternative therapeutic approach(es). The discovery of the cocaine esterase from the strain MBI of the bacterium Rhodococcus sp. (cocE) could be a major breakthrough in this field; cocE hydrolyzes cocaine faster than any known cocaine esterase and catalytic antibody.  相似文献   

2.
Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous literatures that focus on the effects of exposure to cocaine, amphetamine, Δ9-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these alterations of ERK signaling have been thought to contribute to the drug’s rewarding effects and to the long-term maladaptation induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of the ERK pathway is a potential treatment strategy for drug addiction. Haifeng Zhai and Yanqin Li contributed equally to this paper.  相似文献   

3.
Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP) models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. 1H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc) and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism.  相似文献   

4.
Zhu J  Cao GF  Dang YH  Chen T 《生理科学进展》2011,42(6):413-418
不计后果的药物渴求和滥用是药物成瘾的一个显著特征。药物滥用可以诱导行为学和心理学持续性改变的发生,这些持续性改变由相关神经通路(尤其是奖赏系统)神经结构的可塑性变化所引起。本文综述了安非他明、可卡因、尼古丁和吗啡等药物诱发的相关脑区的神经可塑性改变以及引起这些改变的可能原因。药物成瘾诱发的神经结构可塑性改变反映了相关神经系统突触连接的重塑,这些重塑改变该系统的功能,由此便产生了药物滥用的一系列后遗症状———包括成瘾。  相似文献   

5.
Carai MA  Colombo G  Gessa GL 《Life sciences》2005,77(19):2339-2350
The present paper synthetically reviews the multiple experimental lines of evidence indicating the ability of the prototypic cannabinoid CB(1) receptor antagonist, rimonabant (also known as SR 141716), to suppress the reinforcing/rewarding properties of different drugs of abuse, including cocaine, heroin, nicotine and alcohol, in laboratory rodents. This paper also reviews the data demonstrating that rimonabant reduces food intake and body weight in laboratory animals and humans. Taken together, the data reviewed here suggest that rimonabant may constitute a new and potentially effective medication for the treatment of drug addiction and obesity-related disorders.  相似文献   

6.
Addictive drugs and their relationship with infectious diseases   总被引:4,自引:0,他引:4  
The use of drugs of abuse, both recreationally and medicinally, may be related to serious public health concerns. There is a relationship between addictive drugs of abuse such as alcohol and nicotine in cigarette smoke, as well as illegal drugs such as opiates, cocaine and marijuana, and increased susceptibility to infections. The nature and mechanisms of immunomodulation induced by such drugs of abuse are described in this review. The effects of opiates and marijuana, using animal models as well as in vitro studies with immune cells from experimental animals and humans, have shown that immunomodulation induced by these drugs is mainly receptor-mediated, either directly by interaction with specific receptors on immune cells or indirectly by reaction with similar receptors on cells of the nervous system. Similar studies also show that cocaine and nicotine have marked immunomodulatory effects, which are mainly receptor-mediated. Both cocaine, an illegal drug, and nicotine, a widely used legal addictive component of cigarettes, are markedly immunomodulatory and increase susceptibility to infection. The nature and mechanism of immunomodulation induced by alcohol, the most widely used addictive substance of abuse, are similar but immunomodulatory effects, although not receptor-mediated. The many research studies on the effects of these drugs on immunity and increased susceptibility to infectious diseases, including AIDS, are providing a better understanding of the complex interactions between immunity, infections and substance abuse.  相似文献   

7.
Cocaine use remains a serious problem, despite intensive efforts to curb abuse. Given the lack of effective pharmacotherapeutics for the treatment of cocaine addiction, research groups have targeted immunopharmacotherapy in which the drug user's immune system is trained to recognize and remove cocaine prior to entry into the central nervous system. Antibody cocaine esterases and simple binders have been procured, however, rates and/or affinities still need improvement before clinical trials are warranted. Herein, we report the synthesis and testing of two new haptens for the procurement of cocaine binding antibodies and cocaine esterase catalytic antibodies. Central in the design of these haptens was the placement of the linker functionality distal from the anticipated cocaine epitopes in an attempt to bury the hapten deep within an antibody combining site to gain possible entropic and enthalpic advantages.  相似文献   

8.
Tobacco abuse remains a major cause of death worldwide despite ample evidence linking nicotine to various disease states. Consequently, immunopharmacotherapeutic approaches for the treatment of nicotine abuse have received increasing attention. Although a number of nicotine-binding antibodies have been disclosed, no antibody catalysts exist which efficiently degrade nicotine into pharmacologically inactive substances. Herein, we report the first catalytic antibodies which can oxidatively degrade nicotine. These biocatalysts use the micronutrient riboflavin and visible light as a source of singlet oxygen for the production of reactive oxygen species. Along with various known nicotine metabolites, antibody-catalyzed nicotine oxidations produce two novel nicotine oxidation products that were also detected in control ozonation reactions of nicotine. The reaction is efficient, with multiple turnovers of catalyst observed and total consumption of nicotine attained. These results demonstrate the potential of harnessing riboflavin as an endogenous sensitizer for antibody-catalyzed oxidations and demonstrate a new approach for the development of an active vaccine for the treatment of nicotine addiction using in vivo catalytically active antibodies.  相似文献   

9.
A. Dumont 《PSN》2010,8(2):88-92
Cocaine addiction has medical, psychological, cognitive, social, and legal consequences. For a while confined to a targeted audience, epidemiological data show that cocaine addiction considerably “increases” in Europe and reaches all social categories, including socialized people. The cognitive-behavioral approach provides a conceptual frame allowing a better understanding of the mechanisms involved in at the beginning and all along the cocaine addiction. Consumption and addiction to cocaine are then considered learned behaviors. Cognitive-behavioral therapies applied to the treatment of cocaine addiction include different therapeutic techniques that modify maladjusted behaviors, thoughts, and feelings leading to consumption. On a pharmacologic point of view, there is no drug treatment for this disorder, even though promising tracks emerged, especially the N-acétylcystéine.  相似文献   

10.
Saal D  Dong Y  Bonci A  Malenka RC 《Neuron》2003,37(4):577-582
Drug seeking and drug self-administration in both animals and humans can be triggered by drugs of abuse themselves or by stressful events. Here, we demonstrate that in vivo administration of drugs of abuse with different molecular mechanisms of action as well as acute stress both increase strength at excitatory synapses on midbrain dopamine neurons. Psychoactive drugs with minimal abuse potential do not cause this change. The synaptic effects of stress, but not of cocaine, are blocked by the glucocorticoid receptor antagonist RU486. These results suggest that plasticity at excitatory synapses on dopamine neurons may be a key neural adaptation contributing to addiction and its interactions with stress and thus may be an attractive therapeutic target for reducing the risk of addiction.  相似文献   

11.
Role for GDNF in biochemical and behavioral adaptations to drugs of abuse   总被引:5,自引:0,他引:5  
The present study examined a role for GDNF in adaptations to drugs of abuse. Infusion of GDNF into the ventral tegmental area (VTA), a dopaminergic brain region important for addiction, blocks certain biochemical adaptations to chronic cocaine or morphine as well as the rewarding effects of cocaine. Conversely, responses to cocaine are enhanced in rats by intra-VTA infusion of an anti-GDNF antibody and in mice heterozygous for a null mutation in the GDNF gene. Chronic morphine or cocaine exposure decreases levels of phosphoRet, the protein kinase that mediates GDNF signaling, in the VTA. Together, these results suggest a feedback loop, whereby drugs of abuse decrease signaling through endogenous GDNF pathways in the VTA, which then increases the behavioral sensitivity to subsequent drug exposure.  相似文献   

12.
A consistent finding in drug abuse research is that males and females show differences in their response to drugs of abuse. In women, increased plasma estradiol is associated with increased vulnerability to the psychostimulant and reinforcing effects of drugs of abuse. Our laboratory has focused on the role of estradiol in modulating the response to cocaine. We have seen that ovariectomy increases the locomotor response to a single cocaine injection, whereas estradiol exacerbates the locomotor response to repeated cocaine administration. Cocaine-induced sensitization of brain activity, as measured by fMRI, is also dependent on plasma estradiol. Moreover, we observed that although all ovariectomized rats show conditioned place preference to cocaine, it is more robust in ovariectomized rats with estradiol.Opioid receptors are enriched in brain regions associated with pleasure and reward. We find that in females, the effectiveness of kappa opioid agonists in decreasing the locomotor response to repeated cocaine varies with plasma estradiol. We also find that estradiol regulates the density of mu opioid receptors in brains areas associated with reward. These data hint that in females, estradiol modulates the behavioral effects of cocaine by regulating mu and kappa opioid signaling in mesocorticolimbic brain structures. Identifying the mechanisms that mediate differences in vulnerability to drugs of abuse may lead to effective therapeutic strategies for the treatment and prevention of addiction and relapse. We encourage health practitioners treating persons addicted to drugs to consider gender differences in response to particular pharmacotherapies, as well the sex steroid milieu of the patient.  相似文献   

13.
BACKGROUND: Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown. RESULTS: We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol. CONCLUSIONS: We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.  相似文献   

14.
Nicotine is the main psychoactive substance present in tobacco, targeting neuronal nicotinic acetylcholine receptors. The main effects of nicotine associated with smoking are nicotinic receptor activation, desensitization, and upregulation, with the subsequent modulation of the mesocorticolimbic dopaminergic system. However, there is a lack of a comprehensive explanation of their roles that effectively makes clear how nicotine dependence might be established on those grounds. Receptor upregulation is an unusual effect for a drug of abuse, because theoretically this implies less need for drug consumption. Receptor upregulation and receptor desensitization are commonly viewed as opposite, homeostatic mechanisms. We here review the available information on smoking addiction, especially under a recently presented model of nicotine dependence. In this model both receptor upregulation and receptor desensitization are responsible for establishing a biochemical mechanism of nicotine dependence, which have an important role in starting and maintaining tobacco addiction.  相似文献   

15.
Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (2 min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine's sustained positive effects (< 20 min), ratings of “high” and “rush” began to decrease within one or two puffs of a high-nicotine cigarette while nicotine levels were increasing. Peak nicotine levels increased progressively after each of three successive cigarettes smoked at 60 min intervals, but the magnitude of the subjective effects ratings and peak ACTH and cortisol levels diminished. Only DHEA increased consistently after successive cigarettes. The possible influence of neuroactive hormones on nicotine dependence and cocaine abuse and the implications for treatment of these addictive disorders are discussed.  相似文献   

16.
Drugs and food exert their reinforcing effects in part by increasing dopamine (DA) in limbic regions, which has generated interest in understanding how drug abuse/addiction relates to obesity. Here, we integrate findings from positron emission tomography imaging studies on DA's role in drug abuse/addiction and in obesity and propose a common model for these two conditions. Both in abuse/addiction and in obesity, there is an enhanced value of one type of reinforcer (drugs and food, respectively) at the expense of other reinforcers, which is a consequence of conditioned learning and resetting of reward thresholds secondary to repeated stimulation by drugs (abuse/addiction) and by large quantities of palatable food (obesity) in vulnerable individuals (i.e. genetic factors). In this model, during exposure to the reinforcer or to conditioned cues, the expected reward (processed by memory circuits) overactivates the reward and motivation circuits while inhibiting the cognitive control circuit, resulting in an inability to inhibit the drive to consume the drug or food despite attempts to do so. These neuronal circuits, which are modulated by DA, interact with one another so that disruption in one circuit can be buffered by another, which highlights the need of multiprong approaches in the treatment of addiction and obesity.  相似文献   

17.
Li QQ  Luo YX  Sun CY  Xue YX  Zhu WL  Shi HS  Zhai HF  Shi J  Lu L 《Journal of neurochemistry》2011,119(6):1271-1281
Heroin use has seriously threatened public heath in many countries, but the existing therapies continue to have many limitations. Recently, immunotherapy has shown efficacy in some clinical studies, including vaccines against nicotine and cocaine, but no opioid vaccines have been introduced in clinical studies. The development of a novel opioid antigen designed specifically for the prevention of heroin addiction is necessary. A morphine-keyhole limpet hemocyanin conjugate was prepared and administered subcutaneously in rats. Antibody titers in plasma were measured using an enzyme-linked immunosorbent assay (ELISA). Competitive ELISA was used to assess the selectivity of the antibodies. Dopamine concentrations in the nucleus accumbens in rats after vaccine administration were determined by high-performance liquid chromatography with electrochemical detection. The effects of the vaccine on the heroin-primed restatement of self-administration and locomotor sensitization were evaluated. A novel hapten, 6-glutarylmorphine, was produced, and the vaccine generated a high antibody titer response. This vaccine displayed specificity for both morphine and heroin, but the anti-morphine antibodies could not recognize dissimilar therapeutic opioid compounds, such as buprenorphine, methadone, naloxone, naltrexone, codeine, and nalorphine. The morphine antibody significantly decreased morphine-induced locomotor activity in rats after immunization. Importantly, rats immunized with this vaccine did not exhibit heroin-primed reinstatement of heroin seeking when antibody levels were sufficiently high. The vaccine reduced dopamine levels in the nucleus accumbens after morphine administration, which is consistent with its behavioral effects. These results suggest that immunization with a novel vaccine is an effective means of inducing a morphine-specific antibody response that is able to attenuate the behavioral and psychoactive effects of heroin.  相似文献   

18.
Cocaine abuse continues to be prevalent and effective therapies for cocaine craving and addiction remain elusive. In the last decade immunopharmacotherapy has been proposed as a promising means to alleviate this illness. By using the organism's natural immune response, an anti-cocaine vaccine promotes the production of cocaine-specific antibodies that sequester the drug before their passage into the brain, where it exerts its reinforcing and thus addictive effects. A series of studies demonstrating the cocaine-blocking properties of various immunogenic conjugates will be reviewed in the context of the neuropsychopharmacological profile of the drug.  相似文献   

19.
Zweifel LS  Argilli E  Bonci A  Palmiter RD 《Neuron》2008,59(3):486-496
A single exposure to drugs of abuse produces an NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of AMPA receptor (AMPAR) currents in DA neurons; however, the importance of LTP for various aspects of drug addiction is unclear. To test the role of NMDAR-dependent plasticity in addictive behavior, we genetically inactivated functional NMDAR signaling exclusively in DA neurons (KO mice). Inactivation of NMDARs results in increased AMPAR-mediated transmission that is indistinguishable from the increases associated with a single cocaine exposure, yet locomotor responses to multiple drugs of abuse were unaltered in the KO mice. The initial phase of locomotor sensitization to cocaine is intact; however, the delayed sensitization that occurs with prolonged cocaine withdrawal did not occur. Conditioned behavioral responses for cocaine-testing environment were also absent in the KO mice. These findings provide evidence for a role of NMDAR signaling in DA neurons for specific behavioral modifications associated with drug seeking behaviors.  相似文献   

20.
Cocaine abuse remains prevalent worldwide and continues to be a major health concern; nonetheless, there is no effective therapy. Immunopharmacotherapy has emerged as a promising treatment strategy by which anti-cocaine antibodies bind to the drug blunting its effects. Previous passive immunization studies using our human monoclonal antibody, GNCgzk, resulted in protection against cocaine overdose and acute toxicity. To further realize the clinical potential of this antibody, a recombinant IgG form of the antibody has been produced in mammalian cells. This antibody displayed a high binding affinity for cocaine (low nanomolar) in line with the superior attributes of the GNCgzk antibody and reduced cocaine-induced ataxia in a cocaine overdose model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号