首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Actinoporus elongatus is a widely distributed, tropical, intertidal anemone from the Indo-Pacific and Caribbean regions. Its recorded occurrences are disjunct and its feeding and reproductive ecology have not previously been described in detail. A population of this sand-dwelling species was studied for one year at Shelly Bay, Queensland, Australia. Individuals were found to be randomly distributed within the study site at a density of 42 anemones per hectare. No immigration, juvenile recruitment or mortality was observed. Histological analysis indicated a protracted period of gamete maturity during the summer months, and that the sex ratio was 1:1. A. elongatus is an opportunistic feeder with two distinct feeding methods — actinopharyngeal eversion and a newly described trapdoor response. Ciliary currents on the tentacular crown and oral disk were used mainly for cleaning and sand removal.Department of Zoology, James Cook University of North QueenslandDepartment of Marine Biology, James Cook University of North QueenslandDepartment of Marine Biology, James Cook University of North Queensland  相似文献   

2.
Suction electrodes attached to tentacles of the sea anemone Calliactis parasitica record regular bursts of activity associated with the through‐conducting nerve net. Most bursts consist of 10–15 pulses at a frequency of 1 every 4 sec to 1 every 10 sec. The interval between bursts is usually 10–20 min. Regularity in pulse number and frequency in successive bursts suggests that the activity originates from a pacemaker. Bursts are always followed by slow contraction of endodermal longitudinal (parietal) muscles after a short delay, and endo‐dermal circular muscles after a long delay. A simple model for nervous pacemaker control of rhythmic contractions cannot be proposed as slow contractions can also occur in the absence of recorded nerve net activity.  相似文献   

3.
4.
5.
Thecadinium kofoidii is a marine sand-dwelling dinoflagellate that sometimes forms dense blooms. This species was previously thought to be an exclusively autotrophic dinoflagellate, and its mixotrophic ability has not been explored yet. By investigating its ecophysiology, its trophic mode should be revealed. We explored the mixotrophic ability of T. kofoidii by examining its protoplasm under light and transmission electron microscopes with diverse algal prey species. Furthermore, the feeding mechanism of T. kofoidii and prey species on which it feeds were investigated. In addition, the growth and ingestion rates of T. kofoidii as a function of prey concentration were determined when feeding on the benthic cryptophyte Rhodomonas salina. Thecadinium kofoidii was able to feed on R. salina and the dinoflagellate Symbiodinium voratum, which had equivalent spherical diameters (ESDs) ≤ 10.1?µm, while it did not feed on the benthic dinoflagellates Levanderina fissa, Prorocentrum concavum or Ostreopsis cf. ovata, which had ESDs ≥ 15?µm. Thecadinium kofoidii fed on the edible prey cells using the peduncle. The maximum ingestion rate of T. kofoidii on R. salina was 1.3 cells predator?1 d?1. However, feeding on R. salina did not significantly increase the growth rate of T. kofoidii. The low ingestion rate of T. kofoidii on R. salina may have partially resulted in the lack of significant increase in its growth rate due to mixotrophy. The present study discovered predator–prey relationships between T. kofoidii and R. salina and S. voratum, which may change our view of the energy flow and carbon cycling in marine benthic food webs.  相似文献   

6.
7.
Eccentric contractions (ECs), in which a muscle is forced to lengthen while activated, result in muscle injury and, eventually, muscle strengthening and prevention of further injury. Although the mechanical basis of EC-induced injury has been studied in detail, the biological response of muscle is less well characterized. This study presents the development of a minimally invasive model of EC injury in the mouse, follows the time course of torque recovery after an injurious bout of ECs, and uses Affymetrix microarrays to compare the gene expression profile 48 h after ECs to both isometrically stimulated muscles and contralateral muscles. Torque dropped by 55% immediately after the exercise bout and recovered to initial levels 7 days later. Thirty-six known genes were upregulated after ECs compared with contralateral and isometrically stimulated muscles, including five muscle-specific genes: muscle LIM protein (MLP), muscle ankyrin repeat proteins (MARP1 and -2; also known as cardiac ankyrin repeat protein and Arpp/Ankrd2, respectively), Xin, and myosin binding protein H. The time courses of MLP and MARP expression after the injury bout (determined by quantitative real-time polymerase chain reaction) indicate that these genes are rapidly induced, reaching a peak expression level of 6–11 times contralateral values 12–24 h after the EC bout and returning to baseline within 72 h. Very little gene induction was seen after either isometric activation or passive stretch, indicating that the MLP and MARP genes may play an important and specific role in the biological response of muscle to EC-induced injury. muscle LIM protein; cardiac ankyrin repeat protein; muscle ankyrin repeat protein; microarray  相似文献   

8.
Local adaptation in response to fine-scale spatial heterogeneity is well documented in terrestrial ecosystems. In contrast, in marine environments local adaptation has rarely been documented or rigorously explored. This may reflect real or anticipated effects of genetic homogenization, resulting from widespread dispersal in the sea. However, evolutionary theory predicts that for the many benthic species with complex life histories that include both sexual and asexual phases, each parental habitat patch should become dominated by the fittest and most competitive clones. In this study we used genotypic mapping to show that within headlands, clones of the sea anemone Actinia tenebrosa show restricted distributions to specific habitats despite the potential for more widespread dispersal. On these same shores we used reciprocal transplant experiments that revealed strikingly better performance of clones within their natal rather than foreign habitats as judged by survivorship, asexual fecundity, and growth. These findings highlight the importance of selection for fine-scale environmental adaptation in marine taxa and imply that the genotypic structure of populations reflects extensive periods of interclonal competition and site-specific selection.  相似文献   

9.
W Fischer  G Pfitzer 《FEBS letters》1989,258(1):59-62
In intact smooth muscle strips from chicken gizzard, electrical stimulation and carbachol elicited brief, phasic contractions which were associated with a very rapid, transient phosphorylation of the 20 kDa myosin light chains. The phosphorylation transients reached their peak after 3 s and 6 s and preceded that of force. Phosphorylation was not significantly different from basal levels after 10 s and 30 s while force still amounted to 50% of the peak value. The rate of tension decline could be increased by cessation of stimulation or by addition of atropine, even at apparently basal phosphorylation levels suggesting a phosphorylation independent regulation.  相似文献   

10.
Microbes can play an important role in the physiology of animals by providing essential nutrients, inducing immune pathways, and influencing the specific species that compose the microbiome through competitive or facilitatory interactions. The community of microbes associated with animals can be dynamic depending on the local environment, and factors that influence the composition of the microbiome are essential to our understanding of how microbes may influence the biology of their animal hosts. Regularly repeated changes in the environment, such as diel lighting, can result in two different organismal responses: a direct response to the presence and absence of exogenous light and endogenous rhythms resulting from a molecular circadian clock, both of which can influence the associated microbiota. Here, we report how diel lighting and a potential circadian clock impacts the diversity and relative abundance of bacteria in the model cnidarian Nematostella vectensis using an amplicon‐based sequencing approach. Comparisons of bacterial communities associated with anemones cultured in constant darkness and in light:dark conditions revealed that individuals entrained in the dark had a more diverse microbiota. Overall community composition showed little variation over a 24‐hr period in either treatment; however, abundances of individual bacterial OTUs showed significant cycling in each treatment. A comparative analysis of genes involved in the innate immune system of cnidarians showed differential expression between lighting conditions in N. vectensis, with significant up‐regulation during long‐term darkness for a subset of genes. Together, our studies support a hypothesis that the bacterial community associated with this species is relatively stable under diel light conditions when compared with static conditions and that particular bacterial members may have time‐dependent abundance that coincides with the diel photoperiod in an otherwise stable community.  相似文献   

11.
Rapid plant movements triggered by action potentials   总被引:4,自引:0,他引:4  
Rapid bendings of the pulvinus inMimosa pudica, of the trap lobes inDionaea muscipula andAldrovanda vesiculosa, and of the tentacle in Drosera are triggered by action potentials in their motor cells. The action potential ofMimosa may be a C1-spike, and that ofDionaea andAldrovanda may be a Ca2+-spike. Propagation of action potentials in the petiole or motor organ is thought to be electrotonie, cell-to-cell, transmission. The Ca 2+ release from unidentified organelles in the pulvinus or the Ca2+ influx of the cells in the trap with the action current and activation of contractile fibrillar network having ATPase activity in the cytoplasm must be involved in the rapid bending. Contractions of fibrils may open pores in the membrane of the motor cells upon activation. Outward bulk flow of the vacuolar sap through these pores, due to the pressure inside the cell, must result in turgor loss of the motor cells and then the bending of the organ.  相似文献   

12.
13.
A floating culture tube was developed for rearing the sand-dwelling harpacticoid Asellopsis intermedia (T. Scott) in experimental conditions. The culture tube was adapted from a polythene specimen tube with attached lid, the base of the tube and the centre of the lid being replaced by nylon mesh of 75 μm aperture. A thin layer of sand placed on the basal net provided ballast for the culture tube which then floated vertically at the surface of the water. Cultured harpacticoids remained in a healthy condition for several months, apparently grazing on the bacterial epigrowth of the sand grains.  相似文献   

14.
Sun HW  Miao CY  Liu L  Zhou J  Su DF  Wang YX  Jiang CL 《Steroids》2006,71(2):154-159
The common disease asthma is characterized by the obstruction, inflammation and increased sensitivity of the airways. Glucocorticoids (GCs) are one of the most potent anti-inflammatory agents available for treating allergic disease. In this study, we report that the GC budesonide (BUD) can rapidly inhibit the histamine-induced contractions of airway smooth muscle in a process mediated by non-genomic mechanisms. The tracheas of albino Hartley guinea pigs were used. We measured the effects of BUD on the increased isometric tension of trachea segment rings and the shrinking of single airway smooth muscle cells (ASMCs) induced by histamine. With the application of each reagent, the changes in the isometric tension of the segment rings upon maximum contraction and at four time points were recorded. We found that BUD significantly suppressed the increase in isometric tension induced by histamine in guinea pigs within 15 min. We also observed that BUD can reduce the histamine-induced shrinking of single ASMCs in an even shorter time. Mifepristone (RU486) and actidione did not depress the inhibitory effect of BUD. The results preclude action via genomic-mediated responses that usually take several hours to occur. We conclude therefore that GCs have a rapid non-genomic inhibitory effect on guinea pig airway smooth muscle contractions, and provide a new way to investigate this non-genomic mechanism. Further study can provide theoretical evidence for the clinical application of GCs in asthma and other allergic diseases.  相似文献   

15.
In the gypsy moth, Lymantria dispar, release of sperm bundles from the testis into the upper vas deferens (UVD) and subsequent transfer of sperm bundles into the seminal vesicles (SV) occurs in a daily rhythm. The UVD undergoes different types of contractions despite the fact that its musculature appears to receive no innervation. Patterns of the UVD movements were recorded throughout the daily sperm release and transfer cycle. In males kept in light-dark cycles, transfer of sperm from the UVD to the SV was accompanied by a characteristic pattern of UVD contractions of high frequency and amplitude. In males kept in constant light, which fail to transfer sperm, this contraction pattern was absent. It is concluded that the vas deferens muscles undergo daily changes in contraction pattern in phase with the light-dark cycle. The increased muscular contractions appear to be a causal factor in the gated sperm transfer from the UVD to the SV.Abbreviations LD light-dark - LL constant light - SV seminal vesicle - UVD upper vas deferens  相似文献   

16.
17.
Symbiotic cnidarians are marine invertebrates harboring photosynthesizing microalgae (named zooxanthellae), which produce great amounts of oxygen and free radicals upon illumination. Studying antioxidative balance is then crucial to understanding how symbiotic cnidarians cope with ROS production. In particular, it is suspected that oxidative stress triggers cnidarian bleaching, i.e., the expulsion of zooxanthellae from the animal host, responsible for symbiotic cnidarian mass mortality worldwide. This study therefore investigates catalase antioxidant enzymes and their role in bleaching of the temperate symbiotic sea anemone Anemonia viridis. Using specific separation of animal tissues (ectoderm and endoderm) from the symbionts (zooxanthellae), spectrophotometric assays and native PAGE revealed both tissue-specific and activity pattern distribution of two catalase electrophoretypes, E1 and E2. E1, expressed in all three tissues, presents high sensitivity to the catalase inhibitor aminotriazole (ATZ) and elevated temperatures. The ectodermal E1 form is responsible for 67% of total catalase activity. The E2 form, expressed only within zooxanthellae and their host endodermal cells, displays low sensitivity to ATZ and relative thermostability. We further cloned an ectodermal catalase, which shares 68% identity with mammalian monofunctional catalases. Last, 6 days of exposure of whole sea anemones to ATZ (0.5 mM) led to effective catalase inhibition and initiated symbiont expulsion. This demonstrates the crucial role of this enzyme in cnidarian bleaching, a phenomenon responsible for worldwide climate-change-induced mass mortalities, with catastrophic consequences for marine biodiversity.  相似文献   

18.
Toxin II isolated from the sea anemone Anemonia sulcata enhances activation of the action potential sodium ionophore of electrically excitable neuroblastoma cells by veratridine and batrachotoxin. This heterotropic cooperative effect is identical to that observed previously with scorpion toxin but occurs at a 110-fold higher concentration. Depolarization of the neuroblastoma cells inhibits the effect of sea anemone toxin as observed previously for scorpion toxin. Specific scorpion toxin binding is inhibited by sea anemone toxin with KD approximately equal to 90 nM. These results show that the polypeptides scorpion toxin and sea anemone toxin II share a common receptors site associated with action potential sodium ionophores.  相似文献   

19.
We demonstrated that the susceptibility of skeletal muscle to injury from lengthening contractions in the dystrophin-deficient mdx mouse is directly linked with the extent of fiber branching within the muscles and that both parameters increase as the mdx animal ages. We subjected isolated extensor digitorum longus muscles to a lengthening contraction protocol of 15% strain and measured the resulting drop in force production (force deficit). We also examined the morphology of individual muscle fibers. In mdx mice 1–2 mo of age, 17% of muscle fibers were branched, and the force deficit of 7% was not significantly different from that of age-matched littermate controls. In mdx mice 6–7 mo of age, 89% of muscle fibers were branched, and the force deficit of 58% was significantly higher than the 25% force deficit of age-matched littermate controls. These data demonstrated an association between the extent of branching and the greater vulnerability to contraction-induced injury in the older fast-twitch dystrophic muscle. Our findings demonstrate that fiber branching may play a role in the pathogenesis of muscular dystrophy in mdx mice, and this could affect the interpretation of previous studies involving lengthening contractions in this animal. skeletal muscle; mdx mouse; lengthening contraction; Duchenne muscular dystrophy  相似文献   

20.
After a period of rest action potentials in constantly driven preparations of left rabbit atria show a marked change in configuration. After the upstroke an early repolarization takes place which is followed by a prolonged phase of secondary depolarization. This depolarization is strongly suppressed by vagal stimulation. Frequency-response characteristics of this electrotropic effect were obtained by stimulating the vagal supply of the preparation with frequencies in the range from 1.0 to 40.0 s-1 and compared with those of the constantly driven preparation. In most cases studied the frequency-response curves for the post rest action potential are steeper in rise and shifted to the left. By placing a series of vagal stimulations at different moments into the resting interval vagal effects could be composed to reflect the time course of transmitter action in a non beating preparation. It was shown that such time course is not essentially altered compared with that of a driven preparation. From a mathematical treatment of the frequency-response relations it is concluded that post rest action potentials show a higher sensitivity towards the transmitter action and that the amount of transmitter liberated after a period of rest may be increased. Possible explanations for this behaviour are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号