首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(2+)-regulated photoproteins are bioluminescent proteins responsible for bioluminescence of marine coelenterates. The photoprotein molecule is a stable enzyme-substrate complex consisting of a single polypeptide chain and an oxygen "pre-activated" substrate, 2-hydroperoxycoelenterazine, which is tightly but non-covalently bound with a protein. The bioluminescence is triggered by calcium ions and originates from an oxidative decarboxylation of a protein bound substrate. The review provides current data on the photoproteins structure, the mechanism of bioluminescent reaction, the function of some amino acid residues of an active site in the catalysis and the formation of the emitter, as well as on applications of these proteins in a bioluminescent analysis.  相似文献   

2.
The bright bioluminescence of ctenophores, found in oceans worldwide, is determined by Ca2 +-regulated photoproteins, functionally identical to and sharing many properties of hydromedusan photoproteins. In contrast, however, the ctenophore photoproteins are extremely sensitive to UV and visible light over the range of their absorption spectrum. The spatial structure of a novel light-sensitive photoprotein from the ctenophore Beroe abyssicola in its apoform bound with three calcium ions is determined at 2.0 Å. We demonstrate that the apoberovin is a slightly asymmetrical compact globular protein formed by two domains with a cavity in the center, which exactly retains the fold architecture characteristic of hydromedusan photoproteins despite their low amino acid sequence identity. However, the structural alignment of these two photoprotein classes clearly shows that despite the high similarity of shape and geometry of their coelenterazine-binding cavities, their interiors differ drastically. The key residues appearing to be crucial for stabilizing the 2-hydroperoxycoelenterazine and for formation of the emitter in hydromedusan photoproteins, are replaced in berovin by amino acid residues having completely different side chain properties. Evidently, these replacements must be responsible for the distinct properties of ctenophore photoproteins such as sensitivity to light or the fact that the formation of active photoprotein from apophotoprotein, coelenterazine, and oxygen is more effective at alkaline pH.  相似文献   

3.
Bioluminescence, the emission of light from live organisms, occurs in 18 phyla and is the major communication system in the deep sea. It has appeared independently many times during evolution but its origins remain unknown. Coelenterazine bioluminescence discovered in luminous jellyfish is the most common chemistry causing bioluminescence in the sea, occurring in seven phyla. Sequence similarities between coelenterazine luciferases and photoproteins from different phyla are poor (often < 5%). The aim of this study was to examine albumin that binds organic substances as a coelenterazine luciferase to test the hypothesis that the evolutionary origin of a bioluminescent protein was the result of the formation of a solvent cage containing just a few key amino acids. The results show for the first time that bovine and human albumin catalysed coelenterazine chemiluminescence consistent with a mono-oxygenase, whereas gelatin and haemoglobin, an oxygen carrier, had very weak activity. Insulin also catalysed coelenterazine chemiluminescence and was increased by Zn(2+). Albumin chemiluminescence was heat denaturable, exhibited saturable substrate characteristics and was inhibited by cations that bound these proteins and by drugs that bind to human albumin drug site I. Molecular modelling confirmed the coelenterazine binding site and identified four basic amino acids: lys195, arg222, his242 and arg257, potentially important in binding and catalysis similar to naturally occurring coelenterazine bioluminescent proteins. These results support the 'solvent cage' hypothesis for the evolutionary origin of enzymatic coelenterazine bioluminescent proteins. They also have important consequences in diseases such as diabetes, gut disorders and food intolerance where a mono-oxygenase could affect cell surface proteins.  相似文献   

4.
The Renilla bioluminescent system in vivo is comprised of three proteins--the luciferase, green-fluorescent protein, and coelenterazine-binding protein (CBP), previously called luciferin-binding protein (LBP). This work reports the cloning of the full-size cDNA encoding CBP from soft coral Renilla muelleri, its overexpression and properties of the recombinant protein. The apo-CBP was quantitatively converted to CBP by simple incubation with coelenterazine. The physicochemical properties of this recombinant CBP are determined to be practically the same as those reported for the CBP (LBP) of R. reniformis. CBP is a member of the four-EF-hand Ca(2+)-binding superfamily of proteins with only three of the EF-hand loops having the Ca(2+)-binding consensus sequences. There is weak sequence homology with the Ca(2+)-regulated photoproteins but only as a result of the necessary Ca(2+)-binding loop structure. In combination with Renilla luciferase, addition of only one Ca(2+) is sufficient to release the coelenterazine as a substrate for the luciferase for bioluminescence. This combination of the two proteins generates bioluminescence with higher reaction efficiency than using free coelenterazine alone as the substrate for luciferase. This increased quantum yield, a difference of bioluminescence spectra, and markedly different kinetics, implicate that a CBP-luciferase complex might be involved.  相似文献   

5.
Bioluminescence is a chemical reaction process for light emission in vivo. An organic substance is normally oxidized in the protein to obtain the energy required for the light emission. Determination of the structure of the substance is one of the most important parts of bioluminescent research. Photoproteins of a flying squid and a mollusk contain chromophores that are formed by connecting an apo-protein and dehydrocoelenterazine. The chromophore has a chemical structure that can emit light in a photoprotein. The structural analysis of the chromophores in the photoproteins is described.  相似文献   

6.
The crystal structures of calcium-loaded apo-aequorin and apo-obelin have been determined at resolutions 1.7A and 2.2 A, respectively. A calcium ion is observed in each of the three EF-hand loops that have the canonical calcium-binding sequence, and each is coordinated in the characteristic pentagonal bipyramidal configuration. The calcium-loaded apo-protein retain the same compact scaffold and overall fold as the unreacted photoproteins containing the bound substrate, 2-hyroperoxycoelenterazine, and also the same as the Ca2+-discharged obelin bound with product, coleneteramide. Nevertheless, there are easily discerned shifts in both helix and loop regions, and the shifts are not the same between the two proteins. It is suggested that these photoproteins to sense Ca2+ concentration transients and to produce their bioluminescence response on the millisecond timescale. A mechanism of intrastructural transmission of the calcium signal is proposed.  相似文献   

7.
Mnemiopsin 1 (Mn1) and Mnemiopsin 2 (Mn2) are photoproteins found in Mnemiopsis leidyi. We have tried to answer the question of whether the structural features of photoproteins can explain the observed activity data. According to the activity measurements data, they have the same characteristic wavelength. However, the initial intensity of Mn2 is significantly higher than that of Mn1, and decay time of Mn1 (0.92 s−1) is lower than that of Mn2 (1.46 s−1). The phylogenetic analysis demonstrates that, compared with Obelin and Aequorin from Obelia longissima and Aequorea victoria, respectively, a gene modification event may have caused the expansion of the N-terminal side of all photoproteins from M. leidyi. An in silico study has shown that the stability of the photoprotein–substrate complex of Mn2 is higher than that of Mn1, indicating a higher affinity of the substrate for Mn2 compared with Mn1. It was revealed that the active EF-hand loops 1 and III in Mn2 is locally more rigid compared with those in Mn1. We concluded that different stability of the photoprotein complexes leads to different initial intensity. While different patterns of the local dynamics of loops I and III may influence the decay rate.  相似文献   

8.
Energy transfer in a bioluminescent system   总被引:19,自引:0,他引:19  
Many (but not all) of the bioluminescent systems in coelenter-ates involve energy transfer from an excited product molecule of the calcium activated photoprotein to a second species, the green fluorescent protein, with emission at 508 nm from its excited state. Although all the luminescent coelen-terates studied possess photoproteins, not all of them have the green fluorescent protein. This green fluorescent molecule is localized in the luminescent cells; they can thus be easily distinguished by fluorescence microscopy. The active components occur in subcellular particles; these have been isolated in an active form by homogenization in isotonic (to sea water) salt solutions.  相似文献   

9.
A comparison of the two most famous groups of calcium-regulated photoproteins, cnidarians and ctenophores, showed unexpectedly high degree of structural similarity regardless of their low sequence identity. It was suggested these photoproteins can play an important role in understanding the structural basis of bioluminescence activity. Based on this postulate, in this study the cDNA of mnemiopsin from luminous ctenophore Mnemiopsis leidyi was cloned, expressed, purified and sequenced. The purified cDNA, with 621 base pairs, coded a 206 residues protein. Sequence of mnemiopsin showed 93.5 and 51% similarity to other ctenophore proteins and cnidarians, respectively. The cDNA encoding apo-mnemiopsin of M. leidyi was expressed in Escherichia coli. The purified apo-protein showed a single band on SDS-PAGE (molecular weight ~27 kDa). A semi-synthetic mnemiopsin was prepared using coelenterazine and EDTA and its luminescence activity was measured in the presence of CaCl2. The results showed an optimum pH of 9.0 and lower calcium sensitivity compared to aequorin. Comparison of amino acid residues in substrate binding site indicated that binding pocket of ctenophores contains less aromatic residues than cnidarians. This can lead to a decline in the number of stacking interactions between substrate and protein which can affect the stability of coelenterazine in binding cavity. Structural comparison of photoproteins with low sequence identity and high 3D structural similarity, can present a new insight into the mechanism of light emission in photoproteins.  相似文献   

10.
Up to now, all reported Ca2+-regulated photoproteins, except for mnemiopsin, have been cloned and expressed in Escherichia coli. In this study, the cDNA for an isotype of mnemiopsin, from the ctenophore Mnemiopsis leidyi, has been cloned, sequenced, and functionally expressed. The full length cDNA encoding mnemiopsin of M. leidyi was 624 bp open reading frame encoding a protein of 207 amino acid residues with calculated molecular mass of ∼24 kDa. The deduced amino acid sequence showed 90% and 84% identity to berovine (from ctenophore Beroe abyssicola) and bolinopsin 2 (from the ctenophore Bolinopsis infundibulum) respectively. In contrast to all known EF-hand in photoproteins, a unique EF-hand motif was found in mnemiopsin, in which a conserved glycine is substituted with glutamic acid. According to the results, the optimum pH was 9.0, time course of regeneration was 15 h and its Ca2+ sensitivity was lower than aequorin. Results of pKa calculation for ionizable residues, motif scan and hydrophobic interactions of cavity aromatic residues of mnemiopsin in comparison with aequorin showed different patterns in these two photoproteins. In addition, experimental results are confirmed with the theoretical studies.  相似文献   

11.
A study was made of the effects of pH and protic and aprotic solvents on the spectral properties of Renilla (sea pansy) luciferin and a number of its analogs. The results have made possible the assignment of two tautomeric forms of Renilla luciferin, one which absorbs maximally at 435 nm and another which exhibits an absorption maximum at 454 nm. Furthermore the results provide an explanation for the visible absorption characteristics of the photoproteins aequorin (lambda-max 454 nm) and mnemiopsin (lambda-max 435 nm). In addition a Renilla-like luciferin can be extracted from both of these photoproteins. This luciferin produces light with Renilla luciferase, at a rate dependent upon the concentration of dissolved oxygen, and in other respects is indistinguishable from Renilla luciferin in this bioluminescent reaction. The results suggest that the native chromophore in both photoproteins is Renilla luciferin (or a nearly identical derivative). The results also suggest that a hydroperoxide intermediate probably exists in photoproteins, on energetic grounds, and to account for the oxygen concentration independency of the rate of photoprotein reactions. This hydroperoxide may be attached initially to an amino-acid side chain (possibly indolyl-OOH, imidazoyl-OOH, or -SOOH) rather than to the luciferin chromophore.  相似文献   

12.
A luciferin-binding protein (LBP), which binds and protects from autoxidation the substrate of the circadian bioluminescent reaction of Gonyaulax polyedra, has been purified to near homogeneity. The purified protein is a dimer with two identical 72-kDa subunits, and an isoelectric point of 6.7. LBP is a major component of the cells, comprising about 1% of the total protein during the night phase, but drops to only about 0.1% during the day. The luciferin is protected from autoxidation by binding to LBP, and one luciferin is bound per dimer at alkaline pH (Ka approximately 5 x 10(7) M-1). The protein undergoes a conformational change with release of luciferin at pH values below 7, concurrent with an activation of Gonyaulax luciferase. LBP thus has a dual role in the circadian bioluminescent system.  相似文献   

13.
A bioluminescent general protease assay was developed using a combination of five luminogenic peptide substrates. The peptide-conjugated luciferin substrates were combined with luciferase to form a homogeneous, coupled-enzyme assay. This single-reagent format minimized backgrounds, gave stable signals, and reached peak sensitivity within 30 min. The bioluminescent assay was used to detect multiple proteases representing serine, cysteine, and metalloproteinase classes. The range of proteases detected was broader and the sensitivity greater, when compared with a standard fluorescent assay based on cleavage of the whole protein substrate casein. Fifteen of twenty proteases tested had signal-to-background ratios >10 with the bioluminescent method, compared with only seven proteases with the fluorescent approach. The bioluminescent assay also achieved lower detection limits (≤100 pg) than fluorescent methods. During protein purification processes, especially for therapeutic proteins, even trace levels of contamination can impact the protein's stability and activity. This sensitive, bioluminescent, protease assay should be useful for applications in which contaminating proteases are detrimental and protein purity is essential.  相似文献   

14.
A cDNA encoding the Ca2+-regulated photoprotein of the bioluminescent marine hydroid Obelia geniculata was cloned and sequenced. The cDNA is a 774 bp fragment containing two overlapping open reading frames, one of which contained 585 bp encoding a 195 amino acid polypeptide which obviously has the primary structure of the apoprotein of a calcium-regulated photoprotein. Many of the residues are identical to those in other Ca2+-regulated photoproteins: 86% compared with that from Obelia longissima, 76% with that from Clytia (Phialidium), 64% with that from Aequorea, and 64% with that from Mitrocoma(Halistaura). The obelin from O. geniculata was overexpressed in Escherichia coli, refolded from inclusion bodies, and purified. The yield of highly purified recombinant protein was 55-80 mg/L of LB medium. O. geniculata obelin has absorption maxima at 280 and 460 nm and a shoulder at approximately 310 nm. The calcium-discharged protein loses visible absorption but exhibits a new absorption maximum at 343 nm. The bioluminescence of the obelin from O. geniculata is blue (lambda(max) = 495 nm). In contrast, the fluorescence of the calcium-discharged protein is yellow-green (lambda(max) = 520 nm; excitation at 340 nm). This is in sharp contrast to aequorin in which the bioluminescence and fluorescence emission spectra of the calcium-discharged protein are almost identical (lambda(max) = 465 nm). The Ca2+ concentration-effect curve for O. geniculata obelin is similar to those of many other photoproteins: at [Ca2+] below approximately 10(-8) M, calcium-independent luminescence is observed, and at [Ca2+] approximately 10(-3) M, the luminescence reaches a maximum. Between these extremes, the curve spans a vertical range of almost 8 log units with a maximum slope on a log-log plot of about 2.5. In the absence of Mg2+ the rate constant for the rise of bioluminescence determined by the stopped-flow technique is about 450 s(-1). The effects of Mg2+ on the kinetics of bioluminescence are complicated, but at all concentrations studied they are relatively small compared to the corresponding effects on aequorin luminescence. At least with respect to speed and sensitivity to Mg2+, the obelins from both O. longissima and O. geniculata would appear to be more suitable than aequorin for use as intracellular Ca2+ indicators.  相似文献   

15.
Summary It has previously been shown that a protein extracted fromGonyaulax polyedra strongly and specifically binds luciferin, the substrate of the bioluminescent reaction. This binding is markedly dependent on pH with tight binding at pH 8.0 and almost no binding at pH 6.5, as measured by two independent methods. A procedure for the determination of the dissociation constant (Kd) of the luciferin binding protein (LBP) is presented, and Kd is estimated to be7×10–9 M at pH 8.0, assuming an overall quantum yield of 0.1 for the bioluminescent reaction. With cells grown in a 12 h light — 12 h dark cycle, 5 to 10 times more LBP activity can be extracted from dark phase cells than from light phase cells. This rhythm persists in a circadian fashion in cultures maintained in constant dim light.Supported in part by a grant from the National Institutes of Health to J.W.H. (GM 19536)  相似文献   

16.
Aequorin is one of several photoproteins that emits visible light upon binding to calcium ions. It has been widely used as a Ca(2+)-indicator and as an alternative highly sensitive bioluminescent label in binding assays. The apoprotein of aequorin binds an imidazopyrazine compound (coelenterazine) and molecular oxygen to form a stable photoprotein complex. Upon addition of calcium, the photoprotein undergoes a conformational change leading to the oxidation of the chromophore with the release of CO(2) and blue light. To gain more information of structure-function relationships within the photoprotein that will aid in the design of mutants suitable for site-specific conjugation and immobilization, polymerase chain reaction (PCR)-based site-directed mutagenesis was employed to produce five different aequorin mutants. The five mutants included a cysteine-free mutant and four other mutants with single cysteine residues at selected positions within the protein. The aequorin mutants exhibited different bioluminescence emission characteristics with two mutants showing a decrease in relative light production in comparison to the cysteine-free mutant. Additionally, circular dichroism (CD) spectra revealed that the single amino acid substitutions made for two of the aequorin mutants did alter their secondary structures.  相似文献   

17.
The Bacillus subtilis 168 RecR protein bound to duplex DNA in the presence of ATP and divalent cations (Mg2+ and Zn2+) was visualized by electron microscopy as a nearly spherical particle. A RecR homomultimer is frequently located at the intersection of two duplex DNA strands in an interwound DNA molecule, generating DNA loops of variable length. Two individual DNA molecules bound to the same protein are seen at a very low frequency, if at all. The association of RecR with the intersection of two duplex DNA strands is more often seen in supercoiled than with relaxed or linear DNA. The RecR protein displays a slight but significant preference for negatively supercoiled over linear DNA. The minimum substrate size for RecR protein is about 150 bp in length. A possible mechanism for RecR function in DNA repair is discussed.  相似文献   

18.
The Bacillus subtilis 168 RecR protein bound to duplex DNA in the presence of ATP and divalent cations (Mg2+ and Zn2+) was visualized by electron microscopy as a nearly spherical particle. A RecR homomultimer is frequently located at the intersection of two duplex DNA strands in an interwound DNA molecule, generating DNA loops of variable length. Two individual DNA molecules bound to the same protein are seen at a very low frequency, if at all. The association of RecR with the intersection of two duplex DNA strands is more often seen in supercoiled than with relaxed or linear DNA. The RecR protein displays a slight but significant preference for negatively supercoiled over linear DNA. The minimum substrate size for RecR protein is about 150 bp in length. A possible mechanism for RecR function in DNA repair is discussed. Received: 13 August 1996 / Accepted: 18 October 1996  相似文献   

19.
The recombinant Ca2+-activated photoprotein obelin was used as a reporter protein in a solid-phase bioluminescent hybridization DNA assay. Oligonucleotide probes were immobilized on the surface of polymer methacrylate beads or microbiological plates of different types. A 30-mer oligonucleotide or its derivative with the biotin residue on the 3′-terminus, as well as a denatured double-stranded PCR fragment of the hepatitis C virus with the sequence of the 30-mer oligonucleotide was used as a DNA template. The probe in the hybridization complex was labeled by the elongation of the chain using a Taq DNA polymerase in the presence of biotinylated deoxyuridine triphosphate. The results of the bioluminescent assay were compared with the results of colorimetric analysis obtained with alkaline phosphatase as a reporter protein. It was shown that the use of the bioluminescent obelin label substantially accelerates the DNA detection procedure, provides a high sensitivity of the assay (no less than 10?15 mol of DNA template), and ensures a quantitative determination of the amount of DNA template in the tested sample.  相似文献   

20.
The jellyfish Aequorea victoria produces a protein, aequorin, which belongs to the class of Ca(2+)-dependent photoproteins known for their ability to emit visible light. This property of aequorin has allowed for its as a bioluminescent label in binding assays for a variety of analytes. Due to the excellent detection limits we demonstrated in assays for small peptides using a fusion protein between the peptide of interest and the photoprotein, our next goal was to expand the range of possible analytes for producing homogeneous populations of conjugates with the aequorin label to those that were nonpeptidic in nature. Recently, we prepared and characterized four aequorin mutants containing unique cysteine residues at various positions in the polypeptide chain. In the work reported here, the four aequorin mutants were each conjugated with a maleimide-activated methyl ester derivative of thyroxine, a hormone frequently determined to evaluate thyroid function. The thyroxine-aequorin mutant conjugates were characterized in terms of the bioluminescence activities and binding properties with an anti-thyroxine monoclonal antibody for possible future employment in either heterogeneous or homogeneous binding assays for thyroxine and/or other desired analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号