首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new difluoroboron β‐carbonyl cyclic ketonate complexes C2B and DC2B were investigated using several spectroscopic methods. Relative to the absorption spectra, the fluorescence spectra were more affected by the polarity of the solvent. Also, compound C2B showed a more pronounced Stokes’ shift after solvent polarity increased. Transient absorption measurements then demonstrated the relaxation behaviour of the excited state compound molecule. The kinetic results showed that the excited state C2B in tetrahydrofuran (THF) can return from the intramolecular charge‐transfer (ICT) state and the initial excited state to the ground state. The kinetic relaxation pathway after THF was replaced by dimethyl sulfoxide became single. When the carbazole unit was introduced, DC2B also exhibited an ICT state but there was no significant difference in the excited state relaxation path after solvent polarity was changed. The results indicated that C2B is more susceptible to solvent polarity regulation. The global fit results revealed that an increase in the solvent polarity prolonged the lifetime of the ICT state of compound C2B and had the opposite effect on compound DC2B. These results provide guidance for understanding the relationship between solvent polarity and the designing and synthesizing advanced compound materials.  相似文献   

2.
A carbazole‐based compound with intramolecular charge transfer (ICT) characteristics, 3,6‐bis‐((N‐ethylcarbazole‐3‐)‐propene‐1‐keto)‐N‐ethylcarbazole (BCzPCz) was synthesized by N‐alkylation, acetylation and aldol condensation. BCzPCz was further confirmed by IR and 1 H NMR. The central N‐ethylcarbazole was connected with two N‐ethylcarbazole units through the propenone group in BCzPCz. N‐ethylcarbazole and carbonyl groups were electron donors (D) and acceptors (A), respectively. The UV–vis absorption and fluorescence characteristics of BCzPCz were also investigated in different solvents. Solvatochromism was attributed to ICT complex formation in singlet excited state. Magnitude of the change in the dipole moment was 24.78 D according to Lippert‐Mataga equation. Fluorescence of BCzPCz was significantly affected by pH and was quenched in acidic medium. Fluorescence quantum yield of BCzPCz was 0.516 in ethanol. Experimental results showed its potential use as a fluorescence probe and as two‐photon absorption material. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
To establish the reaction mechanism of the high-quantum-yield bioluminescence in Cypridina (Vargula), we investigated the chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones (1H) as Cypridina luciferin analogues in DMSO-1,1,3,3-tetramethylguanidine and in diglyme-acetate buffer. We found that the chemiluminescence of 1H with an electron-donating aryl group, such as a 4-(dimethylamino)phenyl, 3-indolyl or 3-(1-methyl)indolyl group, gave a high quantum yield (Phi(CL)) in diglyme-acetate buffer. This indicates that the reaction mechanism producing this high Phi(CL) involves the chemiexcitation of a neutral dioxetanone intermediate possessing an electron-donating aryl group to the singlet excited state of neutral acetamidopyrazine (the light emitter). In addition, we investigated the fluorescence of acetamidopyrazines and performed DFT calculations for neutral dioxetanones and the transition states (TS) of the dioxetanone's decomposition. The results made it clear that the electron-donating aryl group gives the TS and the singlet-excited acetamidopyrazine (S(1)) a strong intramolecular charge transfer (ICT) character, and their similar ICT character leads to the ICT TS --> S(1) route in the charge transfer-induced luminescence (CTIL) mechanism for efficient chemiexcitation. The reaction mechanism of the chemiluminescence of 1H can explain the highly efficient chemiexcitation of Cypridina bioluminescence.  相似文献   

4.
A novel semi‐rigid latent chromophore E1, containing an amide subunit activated by an adjacent semi‐rigid intramolecular hydrogen‐bonding (IHB) unit, was designed for the detection of fluoride ion by the ‘naked‐eye’ in CH3CN. Comparative studies on structural analogs (E2, E3, and E4) provided significant insight into the structural and functional role of the amide N–H and IHB segment in the selective recognition of fluoride ions. The deprotonation of the amide N–H followed by the enhancement of intramolecular charge transfer (ICT) induced the colorimetric detection of E1 for fluoride ion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The constrained photophysics of intramolecular charge transfer (ICT) probe 4-(dimethylamino)cinnamic acid (DMACA) was studied in different surfactant systems as well as in presence of model water soluble protein bovine serum albumin (BSA). Binding of the probe in ionic micelles like sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) causes an increase in ICT fluorescence intensity, whereas, in non-ionic TritonX-100 (TX-100) the intensity decreases with a concomitant increase in emission from locally excited (LE) state. The observations were explained in terms of the different binding affinity, location of the probe and also the nature of specific hydrogen bonding interaction in the excited state nonradiative relaxation process of DMACA. The ICT fluorescence emission yield decreases in BSA due to the locking in of the probe buried in the hydrophobic pocket of the protein structure. SDS induced uncoiling of protein and massive cooperative binding between BSA and SDS is manifested by the release of probe molecules in relatively free aqueous environment.  相似文献   

7.
Amino-diphenylanilines and their planarized and twisted model compounds have been investigated by steady state and time-resolved absorption and emission, as well as by spectroelectrochemistry. These polyaniline model compounds show that the observation of excited states with full charge separation is linked to molecular twisting where the diaminobenzene is the donor and the phenyl group the acceptor. The observable charge transfer fluorescence shows the characteristic features of twisted intramolecular charge transfer (TICT) excited states, i.e. forbidden emissive properties and strong solvatochromic red shift. The transient absorption spectrum of the TICT state matches the ground state absorption spectrum of the electrochemically produced radical cation of the molecule. This is the first example where excited-state properties of the neutral and ground state properties of the radical cation are directly linked.  相似文献   

8.
The photochemistry of three 9-(dihydroxyphenyl)anthracenes 6-8 was studied in neat CH(3)CN and selected organic solvents, to investigate excited state intramolecular proton transfer (ESIPT) from the phenol to the anthracene moiety. In D(2)O-CH(3)CN mixtures, the observed deuterium exchange of 6-8 is consistent with water-mediated (formal) ESIPT process from the ortho phenolic OH to the 10'-position of the anthracene ring, giving rise to quinone methide (QM) intermediates 12-14. There is no ESIPT for the corresponding methoxy-substituted compounds. Introduction of an extra hydroxyl group onto the phenol ring at different positions led to a range of deuterium exchange quantum yields (Φ = 0.03 to 0.15). In addition to the anticipated ESIPT process to the 10'-position, in neat CH(3)CN and other organic solvents, 6 (but not 7 or 8) undergoes a clean photocyclization to give bridged product 19 in quantitative yield. The mechanism of this unique photocyclization may involve a direct ESIPT or a 1,4-hydrogen transfer from the ortho phenolic OH to the 9'-position of the anthracene ring, generating a zwitterion (20) or diradical (21) intermediate, respectively, followed by ring closure. Fluorescence studies of 6 in various solvents show the existence of both local excited and intramolecular charge transfer states whereas only the former was present for 7 and 8, offering a possible rationalization for the photocyclization pathway.  相似文献   

9.
The effects of the chemical constitution and structure of the substituent on the excited state dynamics of several model fluorescent pyrene-labelled molecules of biophysical interest have been examined. Nine new 1-substituted pyrenyl compounds, Py-NH-CO-C2H5, Py-NH-CO-Leu-Boc, Py-CH2-NH-CO-C2H5, Py-CH2-NH-CO-Leu-Boc, Py-CO-NH-C3H7, Py-CO-NH-Leu-OMe, Py-CH2-CO-NH-C3H7, Py-CH2-CO-NH-Leu-OMe and Py-C3H6-CO-NH-Leu-OMe, have been synthesized and their electronic spectra, fluorescence quantum yields and excited state lifetimes measured. These data have been used to calculate the radiative, kr, and non-radiative decay constants of their S1 states and the values of these constants correlated with the structures of the tethers. Non-radiative S1 decay rates (mainly intersystem crossing to T1) vary in parallel with the radiative rates so that the excited state lifetimes and radiative rate constants change considerably with the structure of the substituent whereas the quantum yields of fluorescence do not. An excellent correlation between [epsilon]max of the S1-S0 transition and either kr or the excited state lifetime is observed as long as no additional intermolecular or intramolecular excited state decay process of significant rate competes with the 'normal' radiative and non-radiative (ISC) decay processes of the pyrenyl chromophore. This correlation may have predictive value. Rates of bimolecular quenching of the S1 states of these molecules by molecular oxygen have been measured. The quenching process is diffusion-controlled with a spin statistical factor of 1, indicating that the S1-T1 electronic energy spacings of all the derivatives exceed the O2(1Deltag-3Sigmag-) electronic excitation energy of ca. 1 eV.  相似文献   

10.
We report the synthesis of a series of ionic liquids (ILs) from various ions having different kosmotropicity including dihydrogen phosphate (H(2)PO(4)(-)), hydrogen sulfate (HSO(4)(-)) and acetate (CH(3)COO(-)) as anions and chaotropic cation such as trialkylammonium cation. To characterize the biomolecular interactions of ILs with protein, we have explored the stability of succinylated Con A (S Con A) in the presence of these aqueous ILs, which are varied combinations of kosmotropic anion with chaotropic cation such as triethylammonium dihydrogen phosphate [(CH(3)CH(2))(3)NH][H(2)PO(4)] (TEAP), trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP) and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). Circular dichroism (CD) and fluorescence experiments have been used to characterize the stability of S Con A by ILs. Our data distinctly demonstrate that the long alkyl chain IL TEAP is a strong stabilizer for S Con A. Further, our experimental results reveal that TEAP is an effective refolding enhancer for S Con A from a thermally denatured protein structure.  相似文献   

11.
Li Y  Shi Y  Chen M  Li Y  Su R  Zhao M  Ma F 《Journal of molecular modeling》2012,18(9):4141-4149
Stimulated by a recent experimental report [Hales JM et al. (2010) Science 327:1485-1488], two-photon absorption and third-order optical nonlinearities of selenopyrylium- and bis(dioxaborine)-terminated polymethine dyes (called SE-7C and DOB-9C) used for all-optical switching were investigated theoretically with time-dependent DFT (TD-DFT) and response theory as well as visualized real-space analysis. The calculated results for the first hyperpolarizability and second hyperpolarizability demonstrated that the two molecules both have large third-order optical nonlinearities. Using real-space analysis, we were able to visually determine that in the one-photon absorption (OPA) process, the first singlet excited state of SE-7C and DOB-9C is an intramolecular charge transfer (ICT) excited state with strong absorption, while the second excited state of these dyes (also termed the "ICT state") shows weak absorption. However, in the two-photon absorption (TPA) process, a larger TPA absorption cross-section was predicted for the second excited state. In this paper, we describe the properties of the S2 excited state, incorporating charge transfer and the transition moment, via real-space analysis, which was very important for understanding the TPA characteristics of the S(2) state.  相似文献   

12.
Rapid and efficient oxidation of Hantzsch 1,4-dihydropyridine with sodium periodate is reported. The Mn(III)-salophen/NaIO4 catalytic system converts 1,4-dihydropyridines to their corresponding pyridine derivatives at room temperature in a 1:1, CH3CN/H2O mixture. The ability of various Schiff base complexes in the oxidation of 1,4-dihydropyridine was also investigated.  相似文献   

13.
The quenching of fluorescence (up to 98%) by anti-fluorescein antibodies is well documented in the literature. Here we report a system where, instead of quenching, bifluorophoric molecules are designed to increase in fluorescence upon binding by an anti-fluorescein antibody. Bifluorophoric molecules are made of fluorescein (F) linked to tetramethylrhodamine (T) via varying numbers of methylene units, denoted as F-(CH(2))(n)-T. These F-(CH(2))(n)-T conjugates are almost nonfluorescent when free in solution due to intramolecular dimerization and stacking. Upon binding to an anti-fluorescein antibody, however, up to 110-fold increase in fluorescence was observed from the rhodamine moiety. This increase is believed to result from intramolecular dimer dissociation that dequenches the rhodamine fluorescence. Fluorescein fluorescence, on the other hand, remains quenched due to binding and intramolecular resonance energy transfer. Moreover, the excitation wavelength was at the absorption maxima of fluorescein, giving a Stoke's shift of about 90 nm. This system couples directly molecular recognition with a concurrent increase in fluorescence emission, obviating wash and incubation steps required by most assays. It is an important molecular reporter system for developing homogeneous assays.  相似文献   

14.
Dai H  Liu F  Gao Q  Fu T  Kou X 《Luminescence》2011,26(6):523-530
An intramolecular charge transfer (ICT) fluorescent sensor 1 using a dansyl moiety as the fluorophore and an azathia-crown ether as the receptor was designed, synthesized and characterized. The ions-selective signaling behaviors of the sensor 1 were investigated in CH(3) CN-H(2) O (1:1, v/v) by fluorescence spectroscopy. It exhibited remarkable fluorescence quenching upon addition of Hg(2+), which was attributed to the 1:1 complex formation between 1 and Hg(2+), while other selected metal ions induced basically no spectral changes. The sensor 1 showed a rapid and linear response towards Hg(2+) in the concentration range from 5.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) with the detection limit of 1.0 × 10(-7) mol L(-1). Furthermore, the whole process could be carried out in a wide pH range of 2.0-8.0 and was not disturbed by other metal ions. Thus, the sensor 1 was used for practical determination of Hg(2+) in different water samples with satisfactory results.  相似文献   

15.
This paper reports absorption and fluorescence spectral studies of methyl 4-[(1E,3E)-4-phenylbuta-1,3-dienyl]benzoate (1), N,N-dimethyl-N-[4-[(1E,3E)-4-phenylbuta-1,3-dienyl]phenyl]amine (2), methyl 4-[(1E,3E)-4-[4-(dimethylamino)phenyl]buta-1,3-dienyl]benzoate (3) and 1-methyl-4-[(1E,3E)-4-[4-methoxyphenyl]buta-1,3-dienyl]benzoate (4) in homogeneous media of 1,4-dioxane and 1,4-dioxane-water binary mixtures, and in microheterogeneous media of cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and Triton-X-100 micelles, and dipalmotoyl phosphatidylcholine (DPPC) vesicles. The binding site of the diene probes in micelles and vesicles has been determined and it has been found that while in micelles dienes occupy the polar interfacial regions, in vesicles the probes are located deep inside the hydrophobic bilayer. The binding of dienes to the vesicles is stronger than their binding to the micelles as indicated by the binding constant values. The fluorescence emission of the probe dienes in micelles is from a conformationally relaxed intramolecular charge transfer excited state. However, in vesicles, since the excited state conformational motions are restricted due to the rigidity of the alkyl chain, the dienes fluoresce from their planar locally excited states.  相似文献   

16.
The synthesis, potentiometric studies and photophysical properties of two new polyamine ligands (L1 and L2) possessing the dansyl chromophore were studied in aqueous 0.15 M NaCl. The compounds show the absorption and emissions bands characteristic of the dansylamide fluorophore and both present intramolecular excited state proton transfer at intermediate pH ranges. One of the ligands (L2) strongly coordinates Zn(II) leading to fluorescence quenching. A model compound (L3) of the dansyl moiety was also investigated.  相似文献   

17.
The photophysical properties of [Re(CO)(3)(dppz)(py)](+) (dppz = dipyrido-[3,2-a:2',3'-c] phenazine) and its 11,12 substituted derivatives [Re(CO)(3)(dppzMe(2))(py)](+) and [Re(CO)(3)(dppzF(2))(py)](+) have been examined in organic and aqueous environments using phosphorescence and picosecond transient visible and infrared absorption spectroscopic methods. The roles of the intraligand IL(pi-pi*) and metal-to-ligand charge transfer MLCT(phz) excited states are evaluated and used to explain the major effect of difluoro-substitution, which is particularly remarkable in water, where the excited state of [Re(CO)(3)(dppzF(2))(py)](+) is strongly quenched.  相似文献   

18.
Effects of intra- and intermolecular hydrogen-bonds on the photophysical properties of 2'-aminoacetophenone derivatives (X-C6H4-COCH3) having a substituted amino group (X) with different hydrogen-bonding ability to the carbonyl oxygen (X: NH2(AAP), NHCH3(MAAP), N(CH3)2(DMAAP), NHCOCH3(AAAP), NHCOCF3(TFAAP)) are investigated by means of steady-state and time-resolved fluorescence spectroscopy and time-resolved thermal lensing. Based on the photophysical parameters obtained in aprotic solvents with different polarity and protic solvents with different hydrogen-bonding ability, the characteristic photophysical behavior of the 2'-aminoacetophenone derivatives is discussed in terms of hydrogen-bonding and n,pi*-pi,pi* vibronic coupling. The dominant deactivation process of AAP and MAAP in nonpolar aprotic solvents is the extremely fast internal conversion (k(ic)= 1.0 x 10(11) s(-1) for AAP and 3.9 x 10(10) s(-1) for MAAP in n-hexane). The internal conversion rates of both compounds decrease markedly with increasing solvent polarity, suggesting that vibronic interactions between close-lying S1(pi,pi*) and S2(n,pi*) states lead to the large increase in the non-radiative decay rate of the lowest excited singlet state. It is also suggested that for MAAP, which has a stronger hydrogen-bond as compared to AAP, an intramolecular hydrogen-bonding induced deactivation is involved in the dissipation of the S1 state. For DMAAP, which cannot possess an intramolecular hydrogen-bond, the primary relaxation mechanism of the S1 state in nonpolar aprotic solvents is the intersystem crossing to the triplet state, whereas in protic solvents very efficient internal conversion due to intermolecular hydrogen-bonding is induced. In contrast, the fluorescence spectra of AAAP and TFAAP, which have an amino group with a much stronger hydrogen-bonding ability, give strongly Stokes-shifted fluorescence, indicating that these compounds undergo excited-state intramolecular proton transfer reaction upon electronic excitation.  相似文献   

19.
We have synthesised the complex [Pt(CH(3)SCH(2)CH(2)SCH(3))(5'-GMP-N7)(2)].6H(2)O (1), where 5'-GMP is 5'-guanosine monophosphate, and determined its X-ray crystal structure. Pt(II) adopts a square-planar geometry in which the bases are coordinated head-to-tail (HT) in the Delta configuration. The nucleotide conformation in this complex is almost identical to that in the previously reported complex [Pt(en)(5'-GMP-N7)(2)].9H(2)O (2), in which there is outer sphere macrochelation via intramolecular H-bonding between the monoanionic phosphate groups and the coordinated ethylenediamine (en) NH. It is therefore apparent that intermolecular interactions rather than intramolecular H-bonding determines the orientation of the sugar-phosphate side-chain in these Pt(II) bisnucleotide complexes in the solid state.  相似文献   

20.
Tyr-72 is included in the hydrophobic cleft which is formed in the histone H1 globular head. Tyr-72 is screened against polar aqueous environment and its intramolecular mobility is sharply retarded. This microenvironment causes a red shift (lambda max = 279 nm) and a sharpening of the longer wavelength shoulder of absorption spectra, a high fluoresence anisotropy value (A = 0,11), high quantum yield of fluoresence (approximately 0.2) and a decrease of the Stern-Volmer Constant during quenching of histone H1 fluorescence by acrylamide. It has been found that the change in the intensity of histone fluorescence at lambda excit = 265 nm, but not at lambda excit = 280 nm, is due to the changes in the quantum yield of fluorescence. The increase of fluorescence intensity at lambda excit = 280 nm depends on the changes in the quantum yield and molar extinction coefficient of histone H1 tyrosyl chromophore. The change in the ratio of fluorescence intensity exited at 280 nm (F280) to the fluorescence intensity excited at 265 nm (F265) corresponds to the change of delta epsilon 286 in difference absorption spectra. The introduction of the parameter Cf = F280/F265 allows one to go over to studying excitation spectrum shifts instead of histone absorption spectrum shifts, which is much more convenient methodologically since in this case it is possible to carry out research using lower protein concentrations and turbid solutions. The results make it possible to designate Tyr-72 of histone H1 as a special class of fluorescent tyrosyls whose properties differ from those of tyrosyls of other tryptophane-free proteins: RNAase, insulin, core histones--H2A, H2B, H3, H4 and some others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号