首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oat leaves produce phytoalexins, avenanthramides, in response to infection by pathogens or treatment with elicitors. The metabolism of avenanthramides was investigated using low molecular weight, partially deacetylated chitin as an elicitor. When oat leaf segments are floated on the elicitor solution, avenanthramides accumulate in the solution. The transfer of elicited oat leaves to solutions containing stable-isotope-labeled avenanthramides resulted in a rapid decrease in the labeled avenanthramides, suggesting the metabolism of avenanthramides. The rate of decrease was enhanced by elicitor treatment, and was dependent on the species of avenanthramides, with avenanthramide B decreasing most rapidly. The rates of biosynthesis and metabolism of avenanthramides A and B were measured using a model of isotope-labeling dynamics. Avenanthramide B was found to be more actively biosynthesized and metabolized than avenanthramide A. Radiolabeled avenanthramide B was incorporated into the cell wall fraction and 99% of incorporated activity was released by alkaline treatment. Gel filtration indicated that high-molecular-weight compounds derived from avenanthramide B were released by alkaline treatment. The decrease in stable-isotope-labeled avenanthramides was suppressed by catalase, salicylhydroxamic acid, and sodium ascorbate, suggesting the involvement of peroxidase in the metabolism. Consistent with this, peroxidase activity that accepts avenanthramide B as a substrate was induced in apoplastic fractions by elicitor treatment. The appearance of multiple basic isoperoxidases was observed by activity staining with 3-amino-9-ethylcarbazole coupled with isoelectric focusing of proteins from elicitor-treated leaves. These findings suggest that accumulated avenanthramides are further metabolized in apoplasts in oat leaves by inducible isoperoxidases.  相似文献   

2.
Oat phytoalexins, avenanthramides, are a series of substituted hydroxycinnamic acid amides with anthranilate. The anthranilate in avenanthramides is biosynthesized by anthranilate synthase (AS, EC 4.1.3.27). Induction of anthranilate synthase activity was investigated in oat leaves treated with oligo-N-acetylchitooligosaccharide elicitors. AS activity increased transiently, peaking 6 h after the elicitation. The induction of activity was dependent on the concentration and the degree of polymerization of the oligo-N-acetylchitooligosaccharide elicitor. These findings indicate that the induction is part of a concerted biochemical change required for avenanthramide production. The elicitor-inducible AS activity was strongly inhibited by L-tryptophan and its analogues including 5-methyl-DL-tryptophan, and 5- and 6-fluoro-DL-tryptophan, while the activity was not affected by D-tryptophan. The accumulation of avenanthramide A was also inhibited by treatment of elicited leaves with these AS inhibitors, indicating that a feedback-sensitive AS is responsible for the avenanthramide production. In elicited leaves, the content of free anthranilate remained at a steady, low level during avenanthramide production. Moreover, administration of anthranilate to elicited oat leaves resulted in an enhanced avenanthramide accumulation. AS may play a role as a rate-limiting enzyme in the biosynthesis of avenanthramides.  相似文献   

3.
Avenanthramides, a series of substituted cinnamic acid amides with anthranilate, are phytoalexins in oats (Avena sativa L.). The precursors of avenanthramides, cinnamate and anthranilate, are biosynthesized via the shikimate pathway that branches at chorismate. Chorismate mutase (CM, EC 5.4.99.5) is the first enzyme on the branch that provides the cinnamate part of avenanthramides. The induction of CM was investigated in primary oat leaves using oligo-N-acetylchitooligosaccharides as elicitors. The CM activity started to increase 6 h after elicitation, and reached a maximum by 9 h, being around twice as large as that in control leaves. Among the oligo-N-acetylchitooligosaccharides tested, tetra-, penta-, and hexasaccharides effectively induced the CM activity in a dose-dependent manner. The activity was separated into two major peaks on anion exchange chromatography with Mono Q, indicating that at least two CM isoforms are present in oat leaves. A comparison of elution profiles of CM activity in intact and elicitor-treated leaves revealed that only one CM isoform is responsive to the elicitor. Two CM isoforms in oat leaves were partially purified and characterized. Both CM isoforms were insensitive to l-phenylalanine, l-tyrosine, l-tryptophan, and caffeate. The fractionation of oat cells indicated that both CM isoforms localized in plastids.  相似文献   

4.
The accumulation of oat (Avena sativa L.) phytoalexins, avenanthramides, occurred in leaf segments treated with oligo-N-acetylchitooligosaccharides. The amount of avenanthramide A, the major oat phytoalexin, reached a maximum 36–48 h after elicitor treatment. This accumulation was preceded by a marked increase in enzyme activities of phenylpropanoid pathway members, including phenylalanine ammonia-lyase (EC 4.3.1.5), cinnamate 4-hydroxylase (EC 1.14.13.11) and 4-coumarate:CoA ligase (EC 6.2.1.12). These enzyme activities reached a maximum 6–12 h after elicitor treatment, when the avenanthramides were produced most rapidly. Both phenylalanine ammonia-lyase and 4-coumarate:CoA ligase activities decreased thereafter to undetectable levels 72 h after treatment, while cinnamate 4-hydroxylase activity showed a second increase 48 h after treatment. Among the chitooligosaccharides tested, tetra- and pentasaccharides most effectively induced these enzyme activities in a dose-dependent manner. The elicitor-induced 4-coumarate: CoA ligase accepted all hydroxycinnamic acids occurring in the avenanthramides as substrates, with the exception of avenalumic acid. These findings indicate that accumulation of the avenanthramides results from de-novo synthesis through the general phenylpropanoid pathway and that early biosynthetic enzymes function as regulatory points of carbon flow to the avenanthramides. Received: 3 December 1998 / Accepted: 27 January 1999  相似文献   

5.
Lepidimoide promotes growth of the cockscomb hypocotyl. It is exuded from germinating seeds of various plant species into their culture environment. The mode of exudation of lepidimoide from seeds into the culture solution, using sunflower and buckwheat seeds, was studied in relation to seed germination. In the dry seeds, about 75% of the lepidimoide was found in the seed coat and about 25% in the kernel. Upon water imbibition it was released into the culture solution. However, the quantity of lepidimoide detected in the seed exudate was more than three times the total amount in dry and imbibed seeds, suggesting that lepidimoide was also produced de novo in the seeds and subsequently released. When seed coats or kernels were imbibed separately, the quantity of lepidimoide released from the seed coats into the culture solution was much the same as that in the dry seeds, but the amount of lepidimoide detected in the exudate of kernels was about 16 times that in the dry kernels. These results suggest that lepidimoide, already present in dry seeds, as well as that newly produced in the kernels following imbibition, was released into the environment.  相似文献   

6.
Content of low-molecular-weight thiols during the imbibition of Pea seeds   总被引:5,自引:0,他引:5  
The metabolism of low-molecular-weight thiols was investigated in seeds of Pisum sativum L. cv. Kleine Rheinländerin during imbibition in water for 14 h. The amount of oxidized glutathione (GSSG) decreased from 319 nmol (g dry weight)−1 in dry seeds to 38 nmol (g dry weight)−1 within the first 14 h of imbibition. The decrease may have been due to the reduction of GSSG to reduced glutathione (GSH), catalyzed by the enzyme glutathione reductase (GR; EC 1.6.4.2). The enzyme activity was high in dry seeds [25 nkat (g dry weight)−1] and decreased to 20 nkat (g dry weight)−1 within 14 h of imbibition. The activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) decreased from 100 nkat (g dry weight)−1 in dry seeds to 67 nkat (g dry weight)−1 after 14 h of imbibition. Within 14 h the amount of γ-glutamyl-cysteine (γ-GC) decreased from 135 to 38 nmol (g dry weight)−1, whereas the cysteine content rose from 81 nmol (g dry weight)−1 in dry seeds to a maximum of 170 nmol (g dry weight)−1 after 12 h of imbibition, which may be due to the degradation of γ-GC into cysteine.  相似文献   

7.
Actin was present at very low levels in the seeds of common bean (Phaseolus vulgaris L.) compared with those from other species, and was observed mostly in the embryo. A time-course of actin expression in germinating bean seeds revealed an induced expression of both the mRNA and protein. Initially, the actin mRNA in seeds was barely detectable by northern blot analysis. However, there was a substantial increase in the expression of the actin mRNA at 24, 48 and 72 h after imbibition, compared with an internal control consisting of a late-embryogenesis-abundant (LEA) type IV gene from P. vulgaris. An increase in the amount of actin in total seed extracts that parallelled that of the mRNA was detected by western blotting starting at 24 h after imbibition. This increase was more apparent when the embryo alone was analyzed. Two-dimensional western blots initially revealed three actin isoforms with isoelectric points (pIs) of approximately 5.6, 5.7 and 5.8, the amounts of which increased within a 48-h period, when a new minor isoform of pI approximately 5.5 appeared; however, after 72 h, the pI-5.8 isoform had almost disappeared and the pI-5.5 isoform had disappeared completely, indicating that these two minor isoforms are expressed transiently. These results indicate that actin is at very low levels in the dry seed but undergoes an increased and differential expression during imbibition, an event probably required to carry out all the necessary functions for germination. Received: 21 July 1998 / Accepted: 1 September 1998  相似文献   

8.
Freshly-harvested seeds of Avena sativa L. do not germinate when imbibed at temperatures higher than 25 degrees C. This high temperature dormancy is due to the seed coats, and to the low activities of glycolysis and the oxidative pentose phosphate pathway (OPP) in the embryo. The analysis by exclusion chromatography of soluble NADP(+) phosphatase activities of embryos revealed two isoforms: a 37 kDa isoform present in both dormant and after-ripened caryopses, and a second isoform, with an apparent molecular weight of 160 kDa, five times more active in embryos of dormant seeds than in the after-ripened ones, after 6 h of imbibition at 30 degrees C. Moreover, the activity of this 160 kDa isoform was three times less in embryos from dormant caryopses when they were grown at 10 degrees C, a permissive temperature for radicle protrusion. These results suggest a correlation between the activity of the 160 kDa NADP(+) phosphatase and the dormancy state of the caryopsis. The two isoforms differed in the pH required for optimal activity: pH 5.7 and 6.5 for the 37 kDa and the 160 kDa phosphatases, respectively. Furthermore, the 160 kDa NADP(+) phosphatase displayed a strong specificity for NADP(+), whereas the 37 kDa isoform was able to hydrolyse numerous other phosphorylated compounds.  相似文献   

9.
The production of oat (Avena sativa L.) phytoalexins, avenanthramides, occurs in response to elicitor treatment with oligo-N-acetylchitooligosaccharides. In this study, avenanthramides production was investigated by techniques that provide high spatial and temporal resolution in order to clarify the process of phytoalexin production at the cellular level. The amount of avenanthramides accumulation in a single mesophyll cell was quantified by a combination of laser micro-sampling and low-diffuse nanoflow liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) techniques. Avenanthramides, NAD(P)H and chlorophyll were also visualized in elicitor-treated mesophyll cells using line-scanning fluorescence microscopy. We found that elicitor-treated mesophyll cells could be categorized into three characteristic cell phases, which occurred serially over time. Phase 0 indicated the normal cell state before metabolic or morphological change in response to elicitor, in which the cells contained abundant NAD(P)H. In phase 1, rapid NAD(P)H oxidation and marked movement of chloroplasts occurred, and this phase was the early stage of avenanthramides biosynthesis. In phase 2, avenanthramides accumulation was maximized, and chloroplasts were degraded. Avenanthramides appear to be synthesized in the chloroplast, because a fluorescence signal originating from avenanthramides was localized to the chloroplasts. Moreover, our results indicated that avenanthramides biosynthesis and the hypersensitive response (HR) occurred in identical cells. Thus, the avenanthramides production may be one of sequential events programmed in HR leading to cell death. Furthermore, the phase of the defense response was different among mesophyll cells simultaneously treated with elicitor. These results suggest that individual cells may have different susceptibility to the elicitor. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
After imbibition of peanut seeds, the concentration of free amino acids in cotyledons increases probably due to hydrolysis of reserve proteins. That increase was accompanied by a stimulation of aspartate aminotransferase (AAT, EC 2.6.1.1) activity especially pronounced between first and sixth day of imbibition. Peanut cotyledons contained several AAT isoforms which could be visualized after polyacrylamide gel electrophoresis (PAGE). Native PAGE of extracts from cotyledons of dry seeds demonstrate three active bands. The intensity of these bands increased reaching a maximum after 6th day of imbibition. An additional band appears transientely on 6th day, but is not visible after 14 days of incubation. A fastest band appears on this latter day. If germination takes place under hypersalinity conditions. the AAT activity severely diminishes and the free amino acid concentration raises. The possibilities of different types of AAT regulation are discussed.  相似文献   

11.
Enzymatic activity of beta-N-acetyhexosaminidase (EC 3.2.1.52) was analysed in seeds and young seedings of maize (Zea mays) using di-N-acetylchitobiose as a substrate. Substantial activity was detected in dry seeds. Activity increased before germination (48 h) but exclusively in the embryo. In seedlings, most of the activity was found in the scutellum, and lower levels in shoots and roots immediately after germination. An isoform of the enzyme was purified from scutellum (72 h after the start of imbibition) by heat treatment of crude extract and four steps of chromatography. Purified beta-N-acetyl-hexosaminidase showed a single band on SDS-PAGE of around 70 kDa. This was almost the same as the molecular weight estimated by size exclusion chromatography, indicating a monomeric form of the active enzyme. The relative activity of the enzyme for di-N-acetylchitobiose was about 15 times greater than that for p-nitrophenyl-N-acetylglucosaminide or p-nitrophenyl-N-acetylgalactosaminide. Analysis of the reaction with oligo-N-acetylchitooliogsaccharides [(GlcNAc)n] revealed an exotype enzyme producing predominantly (GlcNAc)n-1 and N-acetylglucosamine. The optimum pH, temperature, and isoelectric point (pl) were 4.5, 55 degrees C, and 6.75, respectively. The activity was almost completely inhibited in the presence of 5 mmol/L Ag+, Hg2+, or Fe3+.  相似文献   

12.
Kimmerer TW 《Plant physiology》1987,84(4):1210-1213
Pyruvate decarboxylase (PDC, EC 4.1.1.1) and alcohol dehydrogenase (ADH, EC 1.1.1.1) are responsible for the anaerobic production of acetaldehyde and ethanol in higher plants. In developing soybean embryos, ADH activity increased upon imbibition and then declined exponentially with development, and was undetectable in leaves by 30 days after imbibition. PDC was not detectable in soybean leaves. In contrast, ADH activity remained high in developing cottonwood seedlings, with no decline in activity during development. ADH activity in the first fully expanded leaf of cottonwood was 230 micromoles NADH oxidized per minute per gram dry weight, and increased with leaf age. Maximal PDC activity of cottonwood leaves was 10 micromoles NADH oxidized per minute per gram dry weight. ADH activity in cottonwood roots was induced by anaerobic stress, increasing from 58 to 205 micromoles NADH oxidized per minute per gram dry weight in intact plants in 48 hours, and from 38 to 246 micromoles NADH oxidized per minute per gram dry weight in detached roots in 48 hours. Leaf ADH activity increased by 10 to 20% on exposure to anaerobic conditions. Crude leaf enzyme extracts with high ADH activity reduced little or no NADH when other aldehydes, such as trans-2-hexenal, were provided as substrate. ADH and PDC are constitutive enzyme in cottonwood leaves, but their metabolic role is not known.  相似文献   

13.
Manganese superoxide dismutase (Mn-SOD; EC 1.15.1.1 [EC] ) was purifiedfrom germinating seeds of Scots pine (Pinus sylvestris L.) 3days after the start of imbibition. The purification scheduleincluded (NH4)2SO4 fractionation, anion-exchange and hydrophobic-interactionchromatographies and chromatofocusing. Purified Mn-SOD had anapparent specific activity of 4,130 McCord-Fridovich units (mgprotein)–1. The molecular mass of the holoenzyme was estimatedto be 91 kDa by size-exclusion chromatography, and a molecularmass of 23 kDa was determined by SDS-PAGE. However, isoelectricfocusing demonstrated that the purified enzyme consisted ofthree similarly migrating isoforms, with isoelectric pointsof approximately 6.5. NH2-terminal amino acid sequencing ofpurified Mn-SOD revealed no differences among the three isoforms.The comparison of the first 32 NH2-terminal amino acids withsequences of NH2-terminal amino acids of Mn-SODs from angiospermsreflected the phylogenetic distances between Scots pine, whichis a gymnosperm, and angiospermic species. Cell fractionationsuggested the mitochondrial localization of Mn-SODs and no evidencefor glyoxysomal localization was found. Mn-SOD activity wasabsent from dry seeds. It was detectable at a considerable levelafter imbibition for 24 h, and it was again absent from 3-week-oldseedlings. (Received February 8, 1994; Accepted May 24, 1994)  相似文献   

14.
Changes in ascorbate and glutathione contents and the activities and isoenzyme patterns of enzymes of the ascorbate-glutathione cycle were investigated in embryo axes and cotyledons of germinating lupine (Lupinus luteus L.) seeds. Ascorbate content was not significantly affected over the initial 12 h of imbibition in embryo axes, but afterwards increased, with the most rapid accumulation coinciding with radicle emergence. A somewhat similar trend was observed for glutathione with significant increase in embryo axes shortly before radicle protrusion followed by decline in the next hours. In cotyledons the ascorbate pool rose gradually during germination but the amount of glutathione showed fluctuations during a whole germination period. The activity of ascorbate peroxidase (APX) rose progressively in embryo axes, while activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) showed transient increase during germination. New isoforms of APX and GR were synthesized, suggesting that they play a relevant role during germination. All analyzed enzymes were already present in dry seeds which allowed them to be active immediately after imbibition.  相似文献   

15.
16.
Thiamin pyrophosphotransferase activity was present in seedling extracts from several monocot and dicot species of agronomic as well as noncultivated plants. Changes in thiamin pyrophosphotransferase activity and thiamin pyrophosphate content were followed for 6 days in soybean (Merr.) seedlings. Maximum enzyme activity occurred 48 to 96 hours from imbibition. Thiamin pyrophosphate content peaked sharply at 36 hours and was preceded by increased thiamin pyrophosphotransferase activity. Addition of pyrithiamin, an inhibitor of in vitro thiamin pyrophosphotransferase activity, to the imbibition medium at various times inhibited subsequent fresh weight gains of soybean seedlings. These results indicated that, although not among the earliest phosphorylation events after initiation of water imbibition by soybean seeds, a substantial increase in thiamin pyrophosphate content did precede the onset of rapid seedling growth and development. Since both enzyme activity and thiamin appear to be available in unimbibed soybean seeds, ATP or other nucleoside triphosphate concentration may represent an important factor in modulating thiamin phosphorylation during early seedling development.  相似文献   

17.
Larson LA 《Plant physiology》1968,43(2):255-259
Pea seeds (Pisum sativum L. `Alaska') with intact seedcoats (WC) and with seedcoats removed (WOC) were soaked in distilled water for 24 hours at 20°. The water, containing the pea diffusate, was decanted after the second, fourth, sixth, eighth, twelfth, and twenty-fourth hour and analyzed for total nitrogen, α-amino nitrogen, carbohydrate, and total solute dry weight. The seeds were germinated at 20° in a 16 hour photoperiod of 300 foot candles. Stem lengths and dry weights of roots, shoots and cotyledons were determined after 4, 11, and 18 days of growth. WOC seeds imbibed more water than WC seeds during the 24 hour imbibition period. Diffusates from WOC seeds always contained more solute than diffusates from WC seeds. Maltose, glucose, and fructose were not detected in the early diffusates from WOC seeds but were found in WC seed diffusates at all times. Seedlings from WC seeds had longer stems than those from WOC seeds. The dry weight of stems and roots of WC seedlings was greater than those from WOC seedlings. The dry weight of cotyledons from 18 day-old WC seedlings was less than from WOC seedlings. Water absorption by WC seeds was slower than by WOC seeds. Removal of the seedcoat allowed rapid imbibition resulting in seed injury presumably because of the loss of solutes which included monosaccharides, disaccharides, amino acids, and other nitrogen containing compounds. These results are consistent with the hypothesis that rapid imbibition disrupts membrane organization leading to reduction of seedling growth.  相似文献   

18.
Avenanthramides are characteristic constituents of oat seeds. We analyzed the methanol extract of oat seeds by HPLC and detected three compounds 1, 2, and 3 eluted at retention times similar to avenanthramides. The three compounds were purified by column chromatography and HPLC. Spectroscopic analyses of 1, 2, and 3 suggested that they are amides of 4,5-dihydroxyanthranilic acid with caffeic, p-coumaric, and ferulic acids, respectively. Their identities were confirmed by comparing spectra and chromatographic behavior with compounds synthesized from 4,5-dihydroxyanthranilic acid and N-hyrdroxysuccinimide esters of hydroxycinnamic acids. LC-MS/MS analysis with multiple reaction monitoring showed that the amounts of 1, 2, and 3 were 16.5–26.9% of corresponding avenanthamides with 5-hydroxyanthranilic acid. Compounds 1, 2, and 3 showed stronger 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity than the corresponding avenanthramides with 5-hydroxyanthranilic acid, indicating the involvement of 4,5-dihydroxyanthranilic acid moiety in the scavenging of DPPH radicals.  相似文献   

19.
Raffinose family oligosaccharides (RFOs) have been implicated in mitigating the effects of environmental stresses on plants. In seeds, proposed roles for RFOs include protecting cellular integrity during desiccation and/or imbibition, extending longevity in the dehydrated state, and providing substrates for energy generation during germination. A gene encoding galactinol synthase (GOLS), the first committed enzyme in the biosynthesis of RFOs, was cloned from tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds, and its expression was characterized in tomato seeds and seedlings. GOLS (LeGOLS-1) mRNA accumulated in developing tomato seeds concomitant with maximum dry weight deposition and the acquisition of desiccation tolerance. LeGOLS-1 mRNA was present in mature, desiccated seeds but declined within 8 h of imbibition in wild-type seeds. However, LeGOLS-1 mRNA accumulated again in imbibed seeds prevented from completing germination by dormancy or water deficit. Gibberellin-deficient (gib-1) seeds maintained LeGOLS-1 mRNA amounts after imbibition unless supplied with gibberellin, whereas abscisic acid (ABA) did not prevent the loss of LeGOLS-1 mRNA from wild-type seeds. The presence of LeGOLS-1 mRNA in ABA-deficient (sitiens) tomato seeds indicated that wild-type amounts of ABA are not necessary for its accumulation during seed development. In all cases, LeGOLS-1 mRNA was most prevalent in the radicle tip. LeGOLS-1 mRNA accumulation was induced by dehydration but not by cold in germinating seeds, whereas both stresses induced LeGOLS-1 mRNA accumulation in seedling leaves. The physiological implications of LeGOLS-1 expression patterns in seeds and leaves are discussed in light of the hypothesized role of RFOs in plant stress tolerance.  相似文献   

20.
The sucrose non-fermenting-related kinase complex (SnRK1) is a heterotrimeric complex that plays a central role in metabolic adaptation to nutritional or environmental stresses. Here we investigate the role of a regulatory gamma-subunit of the complex, MtSNF4b, in Medicago truncatula seeds. Western blot indicated that MtSNF4b accumulated during seed filling, whereas it disappeared during imbibition of mature seeds. Gel filtration chromatography suggested that MtSNF4b assembled into a complex (450-600 kDa) at the onset of maturation drying, and dissociated during subsequent imbibition. Drying of desiccation-tolerant radicles led to a reassembly of the complex, in contrast to sensitive tissues. Silencing of MtSNF4b using a RNA interference (RNAi) approach resulted in a phenotype with reduced seed longevity, evident from the reduction in both germination percentage and seedling vigour in aged RNAi MtSNF4b seeds compared with the wild-type seeds. In parallel to the assembly of the complex, seeds of the RNAi MtSNF4b lines showed impaired accumulation of raffinose family oligosaccharides compared with control seeds. In mature seeds, the amount of stachyose was reduced by 50-80%, whereas the sucrose content was 60% higher. During imbibition, the differences in non-reducing sugar compared with the control disappeared in parallel to the disassembly of the complex. No difference was observed in dry weight or reserve accumulation such as proteins, lipids and starch. These data suggest that the regulatory gamma-subunit MtSNF4b confers a specific and temporal function to SnRK1 complexes in seeds, improving seed longevity and affecting the non-reducing sugar content at later stages of seed maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号