首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mucus hypersecretion is a clinically important manifestation of chronic inflammatory airway diseases, such as asthma and Chronic obstructive pulmonary disease (COPD). Mucin production in airway epithelia is increased under conditions of oxidative stress. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 suppression is related to the development of airway inflammation and increased ROS levels. In this study, we investigated the role of SHP-1 in mucin secretion triggered by oxidative stress. Human lung mucoepidermoid H292 carcinoma cells were transfected with specific siRNA to eliminate SHP-1 gene expression. Cultured cells were treated with hydrogen peroxide (H2O2), and Mucin 5AC(MUC5AC) gene expression and mucin production were determined. Activation of p38 mitogen activated protein kinase (MAPK) in association with MUC5AC production was evaluated. N-acetylcysteine (NAC) was employed to determine whether antioxidants could block MUC5AC production. To establish the precise role of p38, mucin expression was observed after pre-treatment of SHP-1-depleted H292 cells with the p38 chemical blocker. We investigated the in vivo effects of oxidative stress on airway mucus production in SHP-1-deficient heterozygous (mev/+) mice. MUC5AC expression was enhanced in SHP-1 knockdown H292 cells exposed to H2O2, compared to that in control cells. The ratio between phosphorylated and total p38 was significantly increased in SHP-1-deficient cells under oxidative stress. Pre-treatment with NAC suppressed both MUC5AC production and p38 activation. Blockage of p38 MAPK led to suppression of MUC5AC mRNA expression. Notably, mucin production was enhanced in the airway epithelia of mev/+ mice exposed to oxidative stress. Our results clearly indicate that SHP-1 plays an important role in airway mucin production through regulating oxidative stress.  相似文献   

4.
Human gastric mucous cells - gastric cancer cell lines mucin gene expression - TNFalpha - RT-PCR immunocytochemistry Little is known on the expression pattern of mucin genes in human gastric cancer cell lines in relation to mucin expression in normal gastric epithelial cells. Thus, the aim of this study was to compare gastric cancer cell lines and non-transformed epithelial cells in their expression of the different mucin genes, in order to use these cells as models for physiological MUC expression in human stomach. Human gastric mucous cell primary cultures which were obtained from surgical specimen by collagenase/pronase treatment and a panel of six human gastric cancer cells were screened for mRNA expression of the mucin genes MUC1, MUC2, MUC5AC, MUC5B, and MUC6. Mucin gene expression was analyzed by semi-quantitative RT-PCR, and by Western blotting and immunocytochemistry. Primary cultured human gastric mucous cells retained the stomach-specific pattern of mRNA expression found in gastric mucosal biopsies (MUC1, MUC5AC, MUC6), whereas any gastric cancer cell line exhibited an aberrant mucin gene expression. Mucin gene expression showed large variations in levels and patterns from cell line to cell line, but MUC2 was aberrantly expressed in all cancer cells. Immunocytochemistry confirmed aberrant MUC2 protein expression in cancer cells. The expression of the secretory mucin genes MUC2 and MUC5AC varied in relation to the length of cultivation of the cancer cell lines. Treatment of the gastric cancer cells with TNFalpha resulted in an enhanced mRNA expression of MUC1, MUC2, and MUC5AC (2-fold increase within 3 hours; p <0.05). In contrast, immunocytochemistry disclosed a decrease in MUC2 and MUC5AC staining intensity. Our results indicate that primary cultured human gastric mucous cells provide a physiological in vitro system for investigations of gastric mucin gene regulation. In gastric cancer cells marked changes in the mucin gene expression pattern are found with coexpression of non-gastric type mucins. Gastric mucin gene expression may be regulated by proinflammatory cytokines which could have implications in gastritis.  相似文献   

5.
Studies were undertaken to provide information regarding cell-specific expression of mucin genes in stomach and their relation to developmental and neoplastic patterns of epithelial cytodifferentiation. In situ hybridization was used to study mRNA expression of eight mucin genes (MUC1-4, MUC5AC, MUC5B, MUC6, MUC7) in stomach of 13 human embryos and fetuses (8-27 weeks' gestation), comparing these with normal, metaplastic, and neoplastic adult tissues. These investigations have demonstrated that MUC1, MUC4, MUC5AC, MUC5B, and MUC6 are already expressed in the embryonic stomach at 8 weeks of gestation. MUC3 mRNA expression can be observed from 10.5 weeks of gestation. MUC2 is expressed at later stages, concomitant with mucous gland cytodifferentiation. Normal adult stomach is characterized by strong expression of MUC1, MUC5AC, and MUC6, less prominent MUC2, and sporadic MUC3 and MUC4, without MUC5B and MUC7. Intestinal metaplasia is characterized by an intestinal-type pattern with MUC2 and MUC3 mRNA expression. Gastric carcinomas exhibit altered mucin gene expression patterns with disappearance of MUC5AC and MUC6 mRNAs in some tumor glands, abnormal expression of MUC2, and reappearance of MUC5B mRNAs. In conclusion, we have observed that patterns of mucin gene expression in embryonic and fetal stomach could show similarities with some gastric carcinomas in adults. Differences in mucin gene expression in developmental, metaplastic, and neoplastic stomach compared to normal adult stomach suggest a possible regulatory role for their products in gastric epithelial cell proliferation and differentiation.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Mucin (MUC)1 is a multifunctional mucin expressed by a variety of reproductive tract epithelia. Trophoblast invasion is essential for normal placental development. However, MUC1 expression in the human placenta throughout pregnancy and the role of MUC1 in trophoblast-like cell invasion are still unclear. In the present study, results from quantitative RT-PCR and Western blot demonstrated that MUC1 mRNA and MUC1 protein expression, respectively, increased with gestational age of the human placenta. Immunohistochemistry revealed that MUC1 in placental villi was mainly expressed by syncytiotrophoblasts throughout pregnancy and increased with gestational age. Interestingly, we found two populations of extravillous trophoblasts, MUC1-positive and MUC1-negative cells, in decidua. The numbers of MUC1-positive extravillous trophoblasts were increased during placental development. Furthermore, MUC1 overexpression significantly (P < 0.01) suppressed matrigel invasion of trophoblast-like JAR cells by 34.6% +/- 4.5% compared with control, which was associated with a decrease in MMP9 activity assessed by gelatin zymography. Our results suggest that MUC1 expression in the human placenta is increased during placental development, and its overexpression suppresses trophoblast-like cell invasion in vitro.  相似文献   

13.
14.
Neutrophil elastase (NE), a potent neutrophil inflammatory mediator, increases MUC5AC mucin gene expression through undefined pathways involving reactive oxygen species. To determine the source of NE-generated reactive oxygen species, we used pharmacologic inhibitors of oxidoreductases to test whether they blocked NE-regulated MUC5AC mRNA expression. We found that dicumarol, an inhibitor of the NADP(H):quinone oxidoreductase 1 (NQO1), inhibited MUC5AC mRNA expression in A549 lung adenocarcinoma cells and primary normal human bronchial epithelial cells. We further tested the role of NQO1 in mediating NE-induced MUC5AC expression by inhibiting NQO1 expression using short interfering RNA (siRNA). Transfection with siRNA specific for NQO1 suppressed NQO1 expression and significantly abrogated MUC5AC mRNA expression. NE treatment caused lipid peroxidation in A549 cells; this effect was inhibited by pretreatment with dicumarol, suggesting that NQO1 also regulates oxidant stress in A549 cells after NE exposure. NE exposure increased NQO1 protein and activity levels; NQO1 expression and activity were limited to the cytosol and did not translocate to the plasma membrane. Our results indicate that NQO1 has an important role as a key mediator of NE-regulated oxidant stress and MUC5AC mucin gene expression.  相似文献   

15.
16.
Adeno-associated virus (AAV) is a promising vector for gene transfer in cystic fibrosis. AAV4 and AAV5 both bind to the apical surface of differentiated human airway epithelia, but only AAV5 infects. Both AAV4 and AAV5 require 2,3-linked sialic acid for binding. However, AAV5 interacts with sialic acid on N-linked carbohydrates, whereas AAV4 interacts with sialic acid on O-linked carbohydrates. Because mucin is decorated with O-linked carbohydrates, we hypothesized that mucin binds AAV4 and inhibits gene transfer. To evaluate the effect of secreted mucin, we studied mucin binding and gene transfer to COS cells and the basolateral membrane of well differentiated human airway epithelia. AAV4 bound mucin more efficiently than AAV5, and mucin inhibited gene transfer with AAV4. Moreover, O-glycosidase-pretreated mucin did not block gene transfer with AAV4. Similar to secreted mucin, the transmembrane mucin MUC1 inhibited gene transfer with AAV4 but not AAV5. MUC1 inhibited AAV4 by blocking internalization of the virus. Thus, O-linked carbohydrates of mucin are potent inhibitors of AAV4. Furthermore, whereas mucin plays an important role in innate host defense, its activity is specific; some vectors or pathogens are more resistant to its effects.  相似文献   

17.
Studies were undertaken to provide information regarding cell-specific expression of mucin genes and their relation to developmental and neoplastic patterns of epithelial cytodifferentiation. In situ hybridization was used to study mRNA expression of mucin genes in duodenum and accessory digestive glands (liver, gallbladder, pancreas) of 13 human embryos and fetuses (6. 5-27 weeks' gestation), comparing these with normal and neoplastic adult tissues. These investigations demonstrated that the pattern of mucin gene expression in fetal duodenum reiterated the patterns we observed during gastric and intestinal ontogenesis, with MUC2 and MUC3 expression in the surface epithelium and MUC6 expression associated with the development of Brünner's glands. In embryonic liver, MUC3 was already expressed at 6.5 weeks of gestation in hepatoblasts. As in adults, MUC1, MUC2, MUC3, MUC5AC, MUC5B, and MUC6 were expressed in fetal gallbladder, whereas MUC4 was not. In contrast, MUC4 was strongly expressed in gallbladder adenocarcinomas. MUC5B and MUC6 were expressed in fetal pancreas, from 12 weeks and 26 weeks of gestation, respectively. Surprisingly, MUC3 which is strongly expressed in adult pancreas, was not detected in developmental pancreas. Taken together, these data show complex spatio-temporal regulation of the mucin genes and suggest a possible regulatory role for mucin gene products in gastroduodenal epithelial cell differentiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号