首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high binding affinity of acetazolamide for carbonic anhydrase (K1 congruent to 10(-8) M) was employed to demonstrate the distribution of the enzyme in the rabbit ciliary body by incubating the tissue with 3H-acetazolamide (1.5 Ci/mmol). Specificity of binding was ascertained by displacing 3H-acetazolamide with a high concentration of unlabeled ethoxzolamide (K1 congruent to 10(-9) M). Wedges of the globe anterior to the ora serrata were incubated in bicarbonate buffered physiological saline, 95% O2/5% CO2, at 0 degrees C for 2 hr with either 3H-acetazolamide (0.2 microM), 3H-acetazolamide and unlabeled ethoxzolamide (100 microM), or physiological saline alone. They were then washed for 2 hr in fresh physiological saline and processed for autoradiography. The autoradiographs showed the label localized in both pigmented and nonpigmented layers of ciliary body epithelium in the pars plicata and in the iridial processes. The epithelia of both crests and troughs showed localization of label. In contrast, no concentration of label was found in the stroma of the ciliary body, including vascular endothelium, and in the epithelia of the pars plana. In sections that were incubated with 3H-acetazolamide in the presence of an excess of unlabeled ethoxzolamide, no localization of label occurred. These findings suggest that the epithelia of the pars plicata, but not those of the pars plana, contain carbonic anhydrase. This is consistent with hypotheses restricting aqueous humor formation to the pars plicata.  相似文献   

2.
Four different derivatives of aromatic sulfonamides have been synthesized: 1,2-bis[(4-sulfonamidobenzamide)ethoxy]ethane (SBAM), 1,2-bis[(4-sulfonamidobenzoate)ethoxy]ethane, 1,2-bis[(2,4-dichloro-5-sulfonamidobenzamide)ethoxy]ethane, and 1,2-bis[(2,4-dichloro-5-sulfonamidobenzoate)ethoxy]ethane. SBAM is a most potent inhibitor on ciliary epithelium carbonic anhydrase and is approximately 13 times more active against carbonic anhydrase isoform II than against isoform I.  相似文献   

3.
Summary Acid secreting cells are rich in mitochondria and contain high levels of cytoplasmic carbonic anhydrase II. We have studied the ultrastructural distribution of a mitochondrial isoenzyme, carbonic anhydrase V, in two different acid-secreting epithelial cells, gastric parietal cells and kidney intercalated cells as well as in osteoclasts, which are the main bone resorbing cells. The mitochondria differ in carbonic anhydrase V content in these three acid-producing cells: gastric parietal cell mitochondria show strong immunolabelling for this isoenzyme, osteoclast mitochondria faint labelling and kidney intercalated cell mitochondria no labelling. The immunolabelling was located in the mitochondrial matrix, often in close contact with the inner mitochondrial membrane. These results show that mitochondrial carbonic anhydrase levels are not related to acid-transporting activity.  相似文献   

4.
Procedures for isolating carbonic anhydrase (EC 4.2.1.1) enzymes from the erythrocytes and the mucosae of the gastrointestinal tract of guinea pigs are described. From a haemolysate, haemoglobin was removed by the addition of ammonium sulphate, and also by two other methods, namely by gel filtration or by adsorption on DEAE-Sephadex. The crude enzyme thus obtained was resolved into the different isoenzymes by chromatography with DEAE-cellulose. From particle-free supernatants of homogenates of some gastrointestinal tissues, carbonic anhydrases were purified by ammonium sulphate fractionation, gel filtration, and ion-exchange chromatography with DEAE-cellulose. The major isoenzymes from blood, stomach, proximal colonic mucosa and caecal mucosa were homogeneous during ion-exchange chromatography, acrylamide-gel electrophoresis, and centrifugal examination. From these tissues, carbonic anhydrase was isolated as two major isoenzymes. They resemble the pairs of isoenzymes discovered in the bloods of other species. The carbon dioxide hydratase activity of one isoenzyme (;high activity' carbonic anhydrase) was 40 times that of the other isoenzyme (;low activity' carbonic anhydrase), as measured at a single substrate concentration. Two other minor components of the enzyme are also found in guinea-pig erythrocytes. All of the enzymes isolated had molecular weights of nearly 30000 (sedimentation equilibrium). ;High activity' carbonic anhydrases from blood and gastrointestinal tissues were indistinguishable according to some chemical, physical and kinetic measurements; similarly ;low activity' carbonic anhydrases from those tissues were indistinguishable. ;High activity' carbonic anhydrase was markedly different from the ;low activity' carbonic anhydrase with respect to its amino acid composition, chromatographic behaviour and isoelectric pH value. Marked differences were also found in the tissue concentrations of the major isoenzymes. It is suggested that the characteristic and selective distribution of the different forms of carbonic anhydrase in the guinea-pig tissues is related to the specific and different physiological functions of the enzymes.  相似文献   

5.
The addition of Zn2+ to human carbonic anhydrase B holoenzyme was shown to enhance the protein fluorescence, and this enhancement was correlated with the inhibition of the p-nitrophenyl acetate esterase activity. The affinity for the inhibitory Zn2+ was increased when the ionic inhibitors, acetate or chloride, were added, suggesting that the inhibitory Zn2+-binding site is within the region of the protein that undergoes an anion-induced conformational change. A similar fluorescence enhancement was observed when Zn2+ was added to human carbonic anhydrase C and to bovine carbonic anhydrase, demonstrating that the binding site is not a thiol group. Circular-dichroism studies showed that the C isoenzyme but not the B isoenzyme underwent a major conformational change in the presence of Zn2+. A mechanism for the Zn2+-induced fluorescence enhancement was suggested on the basis of studies with simple compounds.  相似文献   

6.
Carbonic anhydrase C in white-skeletal-muscle tissue.   总被引:2,自引:1,他引:1       下载免费PDF全文
We investigated the activity of carbonic anhydrase in blood-free perfused white skeletal muscles of the rabbit. Carbonic anhydrase activities were measured in supernatants and in Triton extracts of the particulate fractions of white-skeletal-muscle homogenate by using a rapid-reaction stopped-flow apparatus equipped with a pH electrode. An average carbonic anhydrase concentration of about 0.5 microM was determined for white skeletal muscle. This concentration is about 1% of that inside the erythrocyte. Some 85% of the muscle enzyme was found in the homogenate supernatant, and only 15% appeared to be associated with membranes and organelles. White-skeletal-muscle carbonic anhydrase was characterized in terms of its Michaelis constant and catalytic-centre activity (turnover number) for CO2 and its inhibition constant towards ethoxzolamide. These properties were identical with those of the rabbit erythrocyte carbonic anhydrase C, suggesting that a type-C enzyme is present in white skeletal muscle. Affinity chromatography of muscle supernatant and of lysed erythrocytes showed that, whereas rabbit erythrocytes contain about equal amounts of carbonic anhydrase isoenzymes B and C, the B isoenzyme is practically absent from white skeletal muscle. Similarly, ethoxzolamide-inhibition curves suggested that white skeletal muscle contains no carbonic anhydrase A. It is concluded that white skeletal muscle contains essentially one carbonic anhydrase isoenzyme, the C form, most of which is probably of cytosolic origin.  相似文献   

7.
Summary Carbonic anhydrase cytochemistry of the ileal Peyer's patch in foetal and neonatal lambs has indicated secretion from the follicle-associated epithelium to the follicles. Reaction for carbonic anhydrase in the follicle-associated epithelium was found in the luminal plasma membrane, in cytoplasmic vesicles, and in vacuoles containing 50-nm membrane-bounded particles that seemed to be shed to the intercellular space. The lateral plasma membrane was negative for carbonic anhydrase, indicating that formation of carbonic anhydrase-positive particles was restricted to vacuoles. Administration of ferritin to ileal loops of sheep foetuses showed ferritin localized in vesicles and vacuoles of the follicle-associated epithelium followed by exocytosis, together with carbonic anhydrase-positive particles, into the indentations of the lateral cell border. The carbonic anhydrase-positive particles seemed to be transported to the centres of lymphoid follicles where many were attached to the plasma membrane of lymphocytes. Carbonic anhydrase-positive particles were also seen in vesicles and sometimes free in the cytoplasm of the lymphocytes or attached to their nuclear envelope. Light microscopically, carbonic anhydrase reactivity of the follicle-associated epithelium was associated with the early formation of the ileal Peyer's patch at about 100 days gestation. At this time the follicle-associated epithelium showed a strong luminal but at most a week lateral staining. With further foetal development there was a progressive increase in the amount of carbonic anhydrase-positive reaction product in extracellular particles, both along the lateral cell borders of the follicle-associated epithelium and among the lymphocytes of the follicle centres.  相似文献   

8.
The immunohistochemical localization of carbonic anhydrase isoenzymes has never been investigated in avian renal tissue previously. Enzyme activity has largely been documented by histochemical and physiological reports. In this investigation, specific antisera were used to study the distribution of the cytosolic carbonic anhydrase II and III isoenzymes in the quail kidney. Comparison between the present findings and the corresponding histochemical patterns, previously obtained in the same species by a cobalt phosphate precipitation method, resulted in the bulk of renal carbonic anhydrase activity being attributed to the carbonic anhydrase II isoenzyme. Conversely, moderate carbonic anhydrase III immunostaining appeared to be confined to the smooth muscle cells of ureteral and arteriolar walls. Indirect evidence of the occurrence, in the quail kidney, of a membrane-associated carbonic anhydrase form, antigenically distinct from the II and III isoforms, was inferred.  相似文献   

9.
A new isoenzyme of carbonic anhydrase has been isolated and purified from Chlamydomonas reinhardtii. This carbonic anhydrase is composed of two nonidentical subunits with apparent molecular masses of 39 and 4.5 kDa and is located in the periplasmic space. This is the second periplasmic carbonic anhydrase found in C. reinhardtii. Two genes, CAH1 and CAH2, which code for carbonic anhydrase, have been recently described by Fujiwara et al. (Fujiwara, S., Fukuzawa, H., Tachiki, A., and Miyachi, S. (1990) Proc. Natl. Acad, Sci. U.S.A. 87, 9779-9783). The CAH1 gene codes for a periplasmic carbonic anhydrase which is induced under low CO2 conditions and is well characterized. The carbonic anhydrase characterized in this report was isolated from a mutant that is unable to synthesize the CAH1 gene product. Amino acid sequencing demonstrates that this newly isolated carbonic anhydrase is the CAH2 gene product. This is the first report of another functional carbonic anhydrase in C. reinhardtii.  相似文献   

10.
Prontosil, a carbonic anhydrase inhibitor of orange-red colour, is used to visualize carbonic anhydrase bands during isoelectric focusing in polyacrylamide gels. 5–60 ng of the sulfonamide Prontosil are added to the 100–200 μl samples before application to the gels. Bound Prontosil moves into the gel together with carbonic anhydrase and stains the enzyme bands formed there, while unbound Prontosil remains on top of the gels. The method is specific, no proteins other than carbonic anhydrase were observed to be stained, and it requires no special equippment. It was applied to chloroform/ethanol extracts of erythrolysates and while muscle homogenates from rabbits. Densitometric evaluation of the Prontosil-stained bands obtained with these extracts showed that rabbit red cells contain roughly equla amounts of carbonic anhydrase isoenzymes B and C while in rabbit white skeletal muscle isoenzyme C is predominant and little B enzyme occurs. These results confirm previous findings obtained by affinity chromatography of erythrolysates and muscle homogenates.  相似文献   

11.
Methods for immunohistochemical localization of human carbonic anhydrase isoenzyme C (HCA C) with indirect fluorescent antibody and immunoperoxidase techniques are described. Both methods revealed large amounts of this "high activity" isoenzyme in the mucosae of human stomach and appendix. With the indirect immunofluorescent method the presence of the enzyme in human erythrocyte cytoplasm was also demonstrated. Correlations of present findings with those obtained with the traditional histochemical methods for demonstration of carbonic anhydrase activity are discussed.  相似文献   

12.
1. High activity (CA C) and low activity (CA B) carbonic anhydrase isoenzymes have been purified from turtle erythrocytes. 2. The two isoenzymes differed in CO2 hydration specific activity by 36-fold. 3. The low activity isoenzyme contained one half-cystine residue, whereas the high activity isoenzyme contained four half-cystines and required a reducing environment to maintain activity. Both isoenzymes contained zinc. 4. Molecular weights of 28,500 and 30,400 daltons were established for the low and high activity isoenzymes respectively. 5. Both isoenzymes were inhibited by acetazolamide, but only the high activity isoenzyme was inhibited by parachloromercuribenzoate. 6. The low activity isoenzyme was present in the erythrocytes at about 8-10 times the concentration of the high activity isoenzyme. 7. The high activity isoenzyme cross-reacted with antibodies prepared against pure chicken carbonic anhydrase C.  相似文献   

13.
Summary Rabbits immunized with low-activity ruminal carbonic anhydrase (RCA) isoenzyme, extracted from ruminal epithelial cells isolated by digestion with trupsin, yielded anti-RCA sera which reacted specifically with bovine RCA in double agar gel diffusion and immunoelectrophoretic tests, but failed to cross-react with bovine erythrocyte CA. The localization of RCA was identified in histological sections and isolated ruminal epithelial cell preparations by indirect immunofluorescence and immunoperoxidase tests as the basal, spinosum and granulosum layers of ruminal mucous epithelium.  相似文献   

14.
Carbonic anhydrase in human platelets.   总被引:1,自引:0,他引:1       下载免费PDF全文
The carbonic anhydrase activity of human platelets was investigated by measuring the kinetics of CO2 hydration in supernatants of platelet lysates by using a pH stopped-flow apparatus. An average carbonic anhydrase concentration of 2.1 microM was determined for pellets of human platelets. Analysis of the kinetic properties of this carbonic anhydrase yielded a Km value of 1.0 mM, a catalytic-centre activity kcat. of 130000 s-1 and an inhibition constant Ki towards ethoxzolamide of 0.3 nM. From these values, CO2 hydration inside platelets is estimated to be accelerated by a factor of 2500. When platelet lysates were subjected to affinity chromatography, only the high-activity carbonic anhydrase II could be eluted from the affinity column, whereas the carbonic anhydrase isoenzyme I, which is known to occur in high concentrations in human erythrocytes, appeared to be absent.  相似文献   

15.
1. A partial primary structure (197 residues) of carbonic anhydrase from tiger shark (Galeocerdo cuvieri) erythrocytes has been determined. 2. The amino acid sequence of the enzyme is identical to those of human cytoplasmic carbonic anhydrases (CA I-III) by as much as 52-60%. 3. It is shown that tiger shark CA most closely resembles the CA II isoenzyme of amniotes. 4. Isoelectric focusing and inhibition studies on carbonic anhydrase from dogfish (Squalus acanthias) blood and muscle indicate the presence of the same isoenzyme in shark blood and muscle.  相似文献   

16.
Radioimmunoassay of carbonic anhydrase III in rat tissues.   总被引:3,自引:2,他引:1       下载免费PDF全文
A specific and sensitive radioimmunoassay for the rat carbonic anhydrase III isoenzyme was developed. High concentrations of carbonic anhydrase III were detected in soleus muscle and male liver. Female liver and other skeletal muscles contained significantly lower concentrations, and only trace amounts were found in heart, prostate, kidney, brain, plasma, urine and, possibly, erythrocytes.  相似文献   

17.
18.
We investigated the involvement of the enzyme, carbonic anhydrase, in the calcification-decalcification processes occurring in the posterior caeca of the midgut of the terrestrial crustacean, Orchestia cavimana, before and after exuviation. This enzyme was ultrahistochemically localized throughout the membranes of the caecal epithelium as well as extracellularly, i.e., within pre-exuvial calcareous concretions and postexuvial calcified spherules. During the molt cycle, the pattern of carbonic anhydrase activity in the posterior caeca was correlated with the calcium content at this level. Acetazolamide treatment in vivo inhibited about 50% of the calcium uptake during both pre-exuvial secretion and postexuvial reabsorption. The role of carbonic anhydrase in this mineralizing-demineralizing epithelium is discussed and compared with that of other mechanisms involved in this calcium turnover.  相似文献   

19.
The active sites of carbonic anhydrases I contain a unique histidine residue at sequence position 200. To test the hypothesis that His200 is essential for the isoenzyme-specific catalytic and inhibitor-binding properties of carbonic anhydrases I, a variant of human carbonic anhydrase II, having His200 for Thr200, was prepared by oligonucleotide-directed mutagenesis. The variant has a circular dichroic spectrum that is indistinguishable from that of the parent enzyme. The kinetics of CO2 hydration and HCO3- dehydration has been investigated. The results show that the amino acid substitution has led to changes of catalytic parameters as well as Ki values for anion inhibition in the expected directions towards the values for isoenzyme I. However, the maximal 4-nitrophenyl acetate hydrolase activity of the variant is higher than for any naturally occurring carbonic anhydrase studied so far. A detailed analysis of the kinetic observations suggests that the modification has resulted in a change of the step that limits the maximal rate of CO2 hydration at saturating buffer concentrations. This rate-limiting step is an intramolecular proton transfer in unmodified isoenzyme II and, presumably, HCO3- dissociation in the variant and in human isoenzyme I. A free-energy profile for the dominating pathway of CO2 hydration at high pH was constructed. The results suggest that the major effect of His200 is a stabilization of the enzyme-HCO3- complex by about 7.5 kJ/mol (variant) and 6.1 kJ/mol (human isoenzyme I) relative to unmodified isoenzyme II, while proton transfer between the metal site and the reaction medium is only marginally affected by the amino acid replacement.  相似文献   

20.
Summary We investigated the involvement of the enzyme, carbonic anhydrase, in the calcification-decalcification processes occurring in the posterior caeca of the midgut of the terrestrial crustacean, Orchestia cavimana, before and after exuviation. This enzyme was ultrahistochemically localized throughout the membranes of the caecal epithelium as well as extracellularly, i.e., within pre-exuvial calcareous concretions and postexuvial calcified spherules. During the molt cycle, the pattern of carbonic anhydrase activity in the posterior caeca was correlated with the calcium content at this level. Acetazolamide treatment in vivo inhibited about 50% of the calcium uptake during both pre-exuvial secretion and postexuvial reabsorption. The role of carbonic anhydrase in this mineralizing-demineralizing epithelium is discussed and compared with that of other mechanisms involved in this calcium turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号