首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lipid composition of whole sheep platelets and their subcellular fractions was determined. The basic lipids show similar distributions in granules, microsomes, plasma membranes and whole platelets. Phospholipid (about 70% of total lipids) and cholesterol (25% of total lipids) are the principal lipid components. Free cholesterol represents about 98% of the total, whereas cholesteryl ester is a minor component. The phospholipid composition found in intact platelets and their subcellular particles is about: 35% phosphatidylethanolamine (PE), 30% phosphatidylcholine (PC), 20% sphingomyelin and 15% phosphatidylserine (PS). We also investigated aminophospholipid topology in intact platelet plasma membranes and platelet liposomes by using the nonpenetrating chemical probe trinitrobenzenesulfonic acid (TNBS), because they are the major components of total lipids. In intact platelets, PS is not accessible to TNBS during the initial 15 min of incubation, whereas 18% PE is labelled after 15 min. In contrast, in phospholipid extracted from platelets 80% PE and 67% PS react with TNBS within 5 min, while 27 and 25% PE and 15 and 19% PS from liposomes and isolated plasma membranes, respectively, were modified after 15 min of incubation. In view of this chemical modification, it is concluded that 22% of PE and less than 1% of PS are located on the external surface of intact platelet plasma membranes. The asymmetric orientation of aminophospholipids is similar between liposomes and isolated plasma membrane. PS (23 and 28%) and PE (34 and 31%) are scarcely represented outside the bilayer. The data found are consistent with the nonrandom phospholipid distribution of blood cell surface membranes.  相似文献   

2.
The primary amino groups of biomolecules such as aminophospholipids, as well as proteins, are the potential targets of covalent modifications by lipid peroxidation products; however, little attention has been paid to the modification of aminophospholipids such as phosphatidylethanolamine (PE). The purpose of this study is to characterize the formation of a novel modified phospholipid, N-(hexanoyl)phosphatidylethanolamine (HEPE), in the reaction of PE with lipid hydroperoxides using mass spectrometric analyses. Upon reaction of egg PE with 13-hydroperoxyoctadecadienoic acid or other oxidized polyunsaturated fatty acids followed by phospholipase D-mediated hydrolysis, the formation of N-(hexanoyl)ethanolamine (HEEA), a head group of HEPE, was confirmed by isotope dilution liquid chromatography/tandem mass spectrometry. Moreover, increasing HEEA was detected in the hydrolysates of oxidized erythrocyte ghosts and low-density lipoprotein with their increasing lipid peroxidation levels. Collectively, these results suggest that the N-hexanoylated product of phospholipid, HEPE, can be generated during lipid peroxidation and may serve as one mechanism for the covalent modification of aminophospholipids in vivo.  相似文献   

3.
The transbilayer movement of fluorescent and isotopically labeled analogs of phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) from the outer to the inner leaflet (flip) and from the inner to the outer leaflet (flop) of human red blood cells (RBC) was examined. The inward movement of 1-oleoyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole-aminocaproyl)- (C6-NBD-), 1-oleoyl-2-(N-(3-(3-[125I]iodo-4-hydroxyphenyl)propionyl)aminocaproyl)- (C6-125I-), or 1-oleoyl-2-(N-(3-3-[125I]iodo-4-azido-phenyl)propionyl)aminocaproyl- (C6-125I-N3-) analogs of PC and PE were relatively slow. In contrast, all analogs of PS and PE analogs containing aminododecanoic acid (C12 lipids) were rapidly transported to the cell's inner leaflet. Analysis of 125I-N3 lipids cross-linked to membrane proteins revealed labeling of 32-kDa Rh polypeptides that was dependent on the lipid's capacity to be transported to the inner leaflet but was independent of lipid species. To investigate whether lipids could also be transported from the inner to the outer leaflet, lipid probes residing exclusively in the inner leaflet were monitored for their appearance in the outer leaflet. Lipid movement could not be detected at 0 degrees C. At 37 degrees C, however, approximately 70% of the PC, 40% of the PE, and 15% of the PS redistributed to the cells outer leaflet, thereby attaining their normal asymmetric distribution. Continuous incubation in the presence of bovine serum albumin depleted the cells of the analogs (t1/2 approximately 1.5 h) in a manner that was independent of lipid species. Similar to the inward movement of aminophospholipids, the outward movement of PC, PE, and PS was ATP-dependent and could be blocked by oxidation of membrane sulfhydryls and by the histidine reagent bromophenacyl bromide. Evidence is presented which suggests that the outward movement of lipids is an intrinsic property of the cells unrelated to compensatory mechanisms due to an imbalance in lipid distribution.  相似文献   

4.
The effect of lipid headgroup structure upon the stability of lipid asymmetry was investigated. Using methyl-β-cyclodextrin -induced lipid exchange, sphingomyelin (SM) was introduced into the outer leaflets of lipid vesicles composed of phosphatidylglycerol, phosphatidylserine (PS), phosphatidylinositol, or cardiolipin, in mixtures of all of these lipids with phosphatidylethanolamine (PE), and in a phosphatidylcholine/phosphatidic acid mixture. Efficient SM exchange (>85% of that expected for complete replacement of the outer leaflet) was obtained for every lipid composition studied. Vesicles containing PE mixed with anionic lipids showed nearly complete asymmetry which did not decay after 1 day of incubation. However, vesicles containing anionic lipids without PE generally only exhibited partial asymmetry, which further decayed after 1 day of incubation. Vesicles containing the anionic lipid PS were an exception, showing nearly complete and stable asymmetry. It is likely that the combination of multiple charged groups on PE and PS inhibit transverse diffusion of these lipids across membranes relative to those lipids that only have one anionic group. Possible explanations of this behavior are discussed. The asymmetry properties of PE and PS may explain some of their functions in plasma membranes.  相似文献   

5.
The fusion behavior of large unilamellar liposomes composed of N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium (DOTMA) and either phosphatidylcholine (PC) or phosphatidylethanolamine (PE) has been investigated by a fluorescence resonance energy transfer assay for lipid mixing, dynamic light scattering, and electron microscopy. Polyvalent anions induced the fusion of DOTMA/PE (1:1) liposomes with the following sequence of effectiveness: citrate greater than EDTA greater than phosphate, in the presence 100 mM NaCl, pH 7.4. Sulfate, dipicolinate, and acetate were ineffective. DOTMA/PC (1:1) vesicles were completely refractory to fusion in the presence of multivalent anions in the concentration range studied, consistent with the inhibitory effect of PC in divalent cation induced fusion of negatively charged vesicles. DOTMA/PE vesicles could fuse with DOTMA/PC vesicles in the presence of high concentrations of citrate, but not of phosphate. Mixing of DOTMA/PE liposomes with negatively charged phosphatidylserine (PS)/PE or PS/PC (1:1) vesicles resulted in membrane fusion in the absence of multivalent anions. DOTMA/PC liposomes also fused with PS/PE liposomes and, to a limited extent, with PS/PC liposomes. These observations suggest that the interaction of the negatively charged PS polar group with the positively charged trimethylammonium of DOTMA is sufficient to mediate fusion between the two membranes containing these lipids and that the nature of the zwitterionic phospholipid component of these vesicles is an additional determinant of membrane fusion.  相似文献   

6.
Lipid peroxidation products have a high reactivity against the primary amino groups of biomolecules such as aminophospholipids, proteins, and DNA. Until now, many papers have reported about the modification of biomolecules derived from lipid peroxides. Our group has also reported that aminophospholipids, such as phosphatidylethanolamine (PE), can be modified by lipid peroxidation including 13-hydroperoxyoctadecadienoic acid (13-HPODE). The aim of this study was to examine the oxidative stress in vivo by detecting the formation of N-(hexanoyl)phosphatidylethanolamine (HEPE) and N-(hexanoyl)phosphatidylserine (HEPS), a novel hexanoyl adduct, using a liquid chromatography/tandem mass spectrometry (LC/MS/MS) and a monoclonal antibody.Consequently, we observed that the formation of HEPE and HEPS occurred in the red blood cell (RBC) ghosts modified by 13-HPODE and the oxidative stress model induced by carbon tetrachloride (CCl4) using LC/MS/MS monitoring hexanoyl ethanolamine (HEEA), a head group of HEPE, and hexanoyl serine (HESE) as a part of HEPS. Furthermore, we obtained a novel type of monoclonal antibody against HEPE. This antibody could recognize HEPE in the liver of rats with oxidative stress in vivo.  相似文献   

7.
While the Maillard reaction of amino acids and proteins as well as its consequences in vivo has been thoroughly investigated, little attention has so far been paid to the glycation of aminophospholipids such as phosphatidylethanolamine (PE) or phosphatidylserine (PS), which are essential for structure and functionality of biological membranes. PE-derived glucosylamines (Schiff-PEs) and aminoketoses (Amadori-PEs) have now for the first time been simultaneously identified and quantified in erythrocytes from diabetics and healthy individuals by liquid chromatography-electrospray mass spectrometry (LC-(ESI)MS). The amounts of glycated PE (gPE) were significantly higher in diabetics (0.18-34.2 mol% Schiff-PE and 0.047-0.375 mol% Amadori-PE) than in controls (0.12-3.99 mol% Schiff-PE and 0.018-0.055 mol% Amadori-PE). A positive correlation between fructosylated hemoglobin (HbA(1c)) and the gPE levels was established. No advanced glycation endproducts (AGEs) like 5-hydroxymethylpyrrole-2-carbaldehyde (pyrrole-PE), carboxymethyl (CM-PE), or carboxyethyl (CE-PE) derivatives were detected. To investigate the influence of gPE on lipid peroxidation of biological membranes, liposomes consisting of soy-PE and synthetically prepared Amadori-PE (16:0-16:0) were incubated for several days and the formation of oxidation products was monitored. It could be shown that Amadori-PE extensively promotes lipid peroxidation even in the absence of transition metal ions like Cu(2+) and Fe(3+). Oxidative damage to membrane lipids therefore is supposed to be at least partially caused by the glycation of aminophospholipids.  相似文献   

8.
The interaction of hemoglobin with phospholipid bilayer vesicles (liposomes) has been analyzed in several studies to better understand membrane-protein interactions. However, not much is known on hemoglobin interactions with the aminophospholipids, predominantly localized in the inner leaflet of erythrocytes, e.g., phosphatidylserine (PS), phosphatidylethanolamine (PE) in membranes containing phosphatidylcholine (PC). Effects of cholesterol, largely abundant in erythrocytes, have also not been studied in great details in earlier studies. This work therefore describes the study of the interactions of different hemoglobin variants HbA, HbE and HbF and the globin subunits of HbA with the two aminophospholipids in the presence and absence of cholesterol. Absorption measurements indicate preferential oxidative interaction of HbE and alpha-globin subunit with unilamellar vesicles containing PE and PS compared to normal HbA. Cholesterol was found to stabilize such oxidative interactions in membranes containing both the aminophospholipids. HbE and alpha-globin subunits were also found to induce greater leakage of membrane entrapped carboxyfluorescein (CF) using fluorescence measurements. HbE was found to induce fusion of membrane vesicles containing cholesterol and PE when observed under electron microscope. Taken together, these findings might be helpful in understanding the oxidative stress-related mechanism(s) involved in the premature destruction of erythrocytes in peripheral blood, implicated in the hemoglobin disorder, HbE/beta-thalassemia.  相似文献   

9.
The interaction of hemoglobin with phospholipid bilayer vesicles (liposomes) has been analyzed in several studies to better understand membrane-protein interactions. However, not much is known on hemoglobin interactions with the aminophospholipids, predominantly localized in the inner leaflet of erythrocytes, e.g., phosphatidylserine (PS), phosphatidylethanolamine (PE) in membranes containing phosphatidylcholine (PC). Effects of cholesterol, largely abundant in erythrocytes, have also not been studied in great details in earlier studies. This work therefore describes the study of the interactions of different hemoglobin variants HbA, HbE and HbF and the globin subunits of HbA with the two aminophospholipids in the presence and absence of cholesterol. Absorption measurements indicate preferential oxidative interaction of HbE and alpha-globin subunit with unilamellar vesicles containing PE and PS compared to normal HbA. Cholesterol was found to stabilize such oxidative interactions in membranes containing both the aminophospholipids. HbE and alpha-globin subunits were also found to induce greater leakage of membrane entrapped carboxyfluorescein (CF) using fluorescence measurements. HbE was found to induce fusion of membrane vesicles containing cholesterol and PE when observed under electron microscope. Taken together, these findings might be helpful in understanding the oxidative stress-related mechanism(s) involved in the premature destruction of erythrocytes in peripheral blood, implicated in the hemoglobin disorder, HbE/beta-thalassemia.  相似文献   

10.
By experimenting with the aminoalcohols [3-3H]serine and [2-14C]ethanolamine we have been able to relate the effects of ethanol upon the biosynthesis of radioactive aminophospholipids (APL) in rat-liver microsomes and their distribution within the bilayer. The translocation of newly synthesized molecules of aminophospholipids labeled with different fatty acids was also investigated. The synthesis of phosphatidylserine (PS) and phosphatidylethanolamine (PE) by base-exchange reaction (BES) was inhibited in membranes exposed to ethanol in direct response to its concentration. In addition, 100 mM ethanol specifically inhibited the transport of newly synthesized PS to the inner leaflet, resulting in similar levels of PS in both leaflets of the bilayer. The inhibition of PE synthesis by ethanol caused a decrease in its distribution in both inner and outer leaflets. An in vitro study of the incorporation of radioactive palmitate and oleate into the PS and PE of microsomes incubated with ethanol showed a decrease in the radioactivity levels of PE, suggesting that ethanol was specifically inhibiting the corresponding acyltransferase. It specifically altered the transbilayer movement of newly acylated phospholipids, modifying the distribution of palmitoyl- and oleoyl-acylated PS and PE in both leaflets. These results demonstrate for the first time that ethanol interferes with both the synthesis and intramembrane transport of aminophospholipids in endoplasmic reticulum (ER) membranes. Bearing in mind that if a membrane is to function properly its structure must be in optimum condition; it is evident that the observed processes may be responsible to some degree for the pathophysiological effects of alcohol upon cells.  相似文献   

11.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

12.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are two aminophospholipids whose metabolism is interrelated. Both phospholipids are components of mammalian cell membranes and play important roles in biological processes such as apoptosis and cell signaling. PS is synthesized in mammalian cells by base-exchange reactions in which polar head groups of preexisting phospholipids are replaced by serine. PS synthase activity resides primarily on mitochondria-associated membranes and is encoded by two distinct genes. Studies in mice in which each gene has been individually disrupted are beginning to elucidate the importance of these two synthases for biological functions in intact animals. PE is made in mammalian cells by two completely independent major pathways. In one pathway, PS is converted into PE by the mitochondrial enzyme PS decarboxylase. In addition, PE is made via the CDP-ethanolamine pathway, in which the final reaction occurs on the endoplasmic reticulum and nuclear envelope. The relative importance of these two pathways of PE synthesis has been investigated in knockout mice. Elimination of either pathway is embryonically lethal, despite the normal activity of the other pathway. PE can also be generated from a base-exchange reaction and by the acylation of lyso-PE. Cellular levels of PS and PE are tightly regulated by the implementation of multiple compensatory mechanisms.  相似文献   

13.
There is evidence that membranes of rod outer segment (ROS) disks are a high-affinity Ca(2+) binding site. We were interested to see if the high occurrence of sixfold unsaturated docosahexaenoic acid in ROS lipids influences Ca(2+)-membrane interaction. Ca(2+) binding to polyunsaturated model membranes that mimic the lipid composition of ROS was studied by microelectrophoresis and (2)H NMR. Ca(2+) association constants of polyunsaturated membranes were found to be a factor of approximately 2 smaller than constants of monounsaturated membranes. Furthermore, strength of Ca(2+) binding to monounsaturated membranes increased with the addition of cholesterol, while binding to polyunsaturated lipids was unaffected. The data suggest that the lipid phosphate groups of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) in PC/PE/PS (4:4:1, mol/mol) are primary targets for Ca(2+). Negatively charged serine in PS controls Ca (2+) binding by lowering the electric surface potential and elevating cation concentration at the membrane/water interface. The influence of hydrocarbon chain unsaturation on Ca(2+) binding is secondary compared to membrane PS content. Order parameter analysis of individual lipids in the mixture revealed that Ca(2+) ions did not trigger lateral phase separation of lipid species as long as all lipids remained liquid-crystalline. However, depending on temperature and hydrocarbon chain unsaturation, the lipid with the highest chain melting temperature converted to the gel state, as observed for the monounsaturated phosphatidylethanolamine (PE) in PC/PE/PS (4:4:1, mol/mol) at 25 degrees C.  相似文献   

14.
Kawai Y  Kiyokawa H  Kimura Y  Kato Y  Tsuchiya K  Terao J 《Biochemistry》2006,45(47):14201-14211
Hypochlorous acid (HOCl), an inflammatory oxidant derived from neutrophil myeloperoxidase, can chlorinate cytosolic proteins and nuclear DNA bases of target cells by passing through the cell membrane. However, little is known about the consequences of HOCl-derived modification of cell membrane components, including phospholipids. In this study, we characterize the reaction of HOCl with phospholipid molecules and found that aminophospholipids are the key molecules that chemically regulate lipid peroxidation. Upon incubation with HOCl, the peroxidation of egg yolk phosphatidylcholine was significantly enhanced in the presence of phosphatidylethanolamine (PE). In contrast, the peroxidation was significantly inhibited in the presence of phosphatidylserine (PS). On the basis of mass spectrometric and electron paramagnetic resonance characterization, the initiator of the peroxidation was identified as the nitrogen-centered radical originating from PE-derived chloramines, especially N,N-dichlorinated PE, a major product in the HOCl-modified PE. Although PS was also chlorinated upon reaction with HOCl, the formed chloramine rapidly decomposed to phosphatidylglycolaldehyde, a novel class of lipid aldehyde. Formation of phosphatidylglycolaldehyde was also confirmed in the porcine brain PS and erythrocyte cell membrane ghost exposed to HOCl. These results provide a novel mechanism for the HOCl-induced oxidative damage and its endogenous protection in the cell membrane at the site of inflammation.  相似文献   

15.
The role of the membrane lipid composition on the transport protein of branched-chain amino acids of the homofermentative lactic acid bacterium Streptococcus cremoris has been investigated. The major membrane lipid species identified in S. cremoris were acidic phospholipids (phosphatidylglycerol and cardiolipin), glycolipids, and glycerophosphoglycolipids. Phosphatidylethanolamine (PE) was completely absent. Protonmotive force-driven and counterflow transport of leucine was assayed in fused membranes of S. cremoris membrane vesicles and liposomes composed of different lipids obtained by the freeze/thaw-sonication technique. High transport activities were observed with natural S. cremoris and Escherichia coli lipids, as well as with mixtures of phosphatidylcholine (PC) with PE or phosphatidylserine. High transport activities were also observed with mixtures of PC with monogalactosyl diglyceride, digalactosyl diglyceride, or a neutral glycolipid fraction isolated from S. cremoris. PC or mixtures of PC with phosphatidylglycerol, phosphatidic acid, or cardiolipin showed low activities. In mixtures of PC and methylated derivatives of PE, both counterflow and protonmotive force-driven transport activities decreased with increasing degree of methylation of PE. The decreased transport activity in membranes containing PC could be restored by refusion with PE-containing liposomes. These results demonstrate that both aminophospholipids and glycolipids can be activators of the leucine transport system from S. cremoris. It is proposed that aminophospholipids in Gram-negative bacteria and glycolipids in Gram-positive bacteria have similar functions with respect to solute transport.  相似文献   

16.
Lipid glycation is a non-enzymatic reaction between glucose and the free amino group of aminophospholipids, particularly in chronic hyperglycemia. Glycated phosphatidylethanolamine have been found in plasma and atherosclerotic plaques of diabetic patients and was correlated with increased oxidative and inflammatory stress in diabetes. However, the biological roles of glycated lipids are not fully understood. In this study, we evaluated the effect of palmitoyl-oleoyl-phosphatidylethanolamine (POPE) oxidation, glycation, and glycoxidation products on monocyte and myeloid dendritic cell stimulation. Flow cytometry analysis was used to evaluate the capability of each modified PE to induce the expression of different cytokines (IL-1β, IL-6, IL-8, MIP-1β, and TNF-α) in monocytes or myeloid dendritic cells (mDC). Our results showed that PE modifications induced different effect on the stimulation of cells producing cytokines. All PE modifications induced higher frequencies of cytokine-producing cells than basal state. Higher stimulation levels were obtained with glycated POPE, followed by glycoxidized POPE. In contrast, oxidized POPE negatively regulated the frequency of monocytes and mDC producing cytokines, when compared with non-modified POPE. In conclusion, we verified that PE glycation, compared with oxidation and glycation plus oxidation, had higher ability to stimulate monocytes and mDC. Thus detection of increased levels of PE glycation in diabetes could be considered a predictor of a inflammatory state.  相似文献   

17.
This study investigated the lipid and fatty acid composition of gecko photoreceptor outer segment membranes which contain the P521 cone-type pigment. The lipids of gecko photoreceptor outer segment membranes were first extracted and separated by thin layer chromatography (TLC) and then analyzed by gas chromatography (GC). Our results show that gecko photoreceptor outer segment membranes contain less phosphatidylethanolamine (PE) and more phosphatidylcholine (PC) and phosphatidylserine (PS) compared with those of bovine and frog. The content of the polyunsaturated fatty acid, docosahexaenoic acid (DHA), in PC and PS is also the highest yet reported (55 and 63%, respectively). These lipid differences may provide some insight into the specific lipid requirements of cone-type pigments.  相似文献   

18.
The ATP-dependent translocation of phospholipids in the plasma membrane of intact Friend erythroleukemic cells (FELCs) was studied in comparison with that in the membrane of mature murine erythrocytes. This was done by following the fate of radiolabeled phospholipid molecules, previously inserted into the outer monolayer of the plasma membranes by using a non-specific lipid transfer protein. The transbilayer equilibration of these probe molecules was monitored by treating the cells--under essentially non-lytic conditions--with phospholipases A2 of different origin. Rapid reorientations of the newly introduced aminophospholipids in favour of the inner membrane leaflet were observed in fresh mouse erythrocytes; the inward translocation of phosphatidylcholine (PC) in this membrane proceeded relatively slow. In FELCs, on the other hand, all three glycerophospholipids equilibrated over both halves of the plasma membrane very rapidly, i.e. within 1 h; nevertheless, an asymmetric distribution in favour of the inner monolayer was only observed for phosphatidylserine (PS). Lowering the ATP-level in the FELCs caused a reduction in the rate of inward translocation of both aminophospholipids, but not of that of PC, indicating that this translocation of PS and phosphatidylethanolamine (PE) is clearly ATP-dependent. Hence, the situation in the plasma membrane of the FELC is rather unique in a sense that, though an ATP-dependent translocase is present and active both for PS and PE, its activity results in an asymmetric distribution of PS, but not of PE. This remarkable situation might be the consequence of the fact that, in contrast to the mature red cell, this precursor cell still lacks a complete membrane skeletal network.  相似文献   

19.
Gamma-secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1 and, Pen-2 that is responsible for the intramembrane proteolysis of various type I transmembrane proteins, including amyloid beta-precursor protein and Notch. The direct labeling of PS polypeptides by transition-state analogue gamma-secretase inhibitors suggested that PS represents the catalytic center of gamma-secretase. Here we show that one of the major gamma-secretase inhibitors of dipeptidic type, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), targets the C-terminal fragment of PS, especially the transmembrane domain 7 or more C-terminal region, by designing and synthesizing DAP-BpB (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine-4-(4-(8-biotinamido)octylamino)benzoyl)benzyl)methylamide), a photoactivable DAPT derivative. We also found that DAP-BpB selectively binds to the high molecular weight gamma-secretase complex in an activity-dependent manner. Photolabeling of PS by DAP-BpB is completely blocked by DAPT or its structural relatives (e.g. Compound E) as well as by arylsulfonamides. In contrast, transition-state analogue inhibitor L-685,458 or alpha-helical peptidic inhibitor attenuated the photolabeling of PS1 only at higher concentrations. These data illustrate the DAPT binding site as a novel functional domain within the PS C-terminal fragment that is distinct from the catalytic site or the substrate binding site.  相似文献   

20.
The glucose transport system, isolated from rat adipocyte membrane fractions, was reconstituted into phospholipid vesicles. Vesicles composed of crude egg yolk phospholipids, containing primarily phosphatidylcholine (PC) and phosphatidylethanolamine (PE), demonstrated specific d-glucose uptake. Purified vesicles made of PC and PE also supported such activity but PC or PE by themselves did not. The modulation of this uptake activity has been studied by systematically altering the lipid composition of the reconstituted system with respect to: (1) polar headgroups; (2) acyl chains, and (3) charge. Addition of small amounts (20 mol%) of PS, phosphatidylinositol (PI), cholesterol, or sphingomyelin significantly reduced glucose transport activity. A similar effect was seen with the charged lipid, phosphatidic acid. In the case of PS, this effect was independent of the acyl chain composition. Polar headgroup modification of PE, however, did not appreciably affect transport activity. Free fatty acids, on the other hand, increased or decreased activity based on the degree of saturation and charge. These results indicate that glucose transport activity is sensitive to specific alterations in both the polar headgroup and acyl chain composition of the surrounding membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号