首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sox B1 group genes, Sox1, Sox2, and Sox3 (Sox1-3), are involved in neurogenesis in various species. Here, we identified the Xenopus homolog of Sox1, and investigated its expression patterns and neural inducing activity. Sox1 was initially expressed in the anterior neural plate of Xenopus embryos, with expression restricted to the brain and optic vesicle by the tailbud stage. Expression subsequently decreased in the eye region by the tadpole stage. Sox1 expression in animal cap explants was induced by inhibition of BMP signaling in the same manner as Sox2, Sox3, and SoxD. In addition, overexpression of Sox1 induced neural markers in ventral ectoderm and in animal caps. These results implicate Xenopus Sox1 in neurogenesis, especially brain and eye development.  相似文献   

2.
3.
4.
Early neural cell death is programmed cell death occurring within proliferating and undifferentiated neural progenitors. Little is known about the regulation and role of early neural cell death. In Xenopus embryos, primary neurogenesis is disrupted following the inhibition of early neural cell death, indicating that it is required for normal primary neurogenesis. Here we show that early neural cell death is dependent on primary neurogenesis. Overexpression of XSoxD concomitantly reduced N-Tubulin expression and early neural cell death, as seen by reduced TUNEL staining in stage 15 embryos. Conversely, overexpression of XNgnr1 led to ectopic N-Tubulin expression and TUNEL staining. However, XNeuroD overexpression, which induces ectopic N-Tubulin expression downstream of XNgnr1, had no effect on early neural cell death. E1A12S differentially inhibits the differentiation pathway induced by XNGNR1 protein. E1A12S-mediated inhibition of XNGNR1 neurogenic activity resulted in the reduction of N-Tubulin expression and TUNEL staining. Taken together, our data establish that primary neurogenesis induced by XNGNR1 promotes early neural cell death. This indicates that XNgnr1 positively regulates early neural cell death. We propose that early neural cell death might eliminate cells with abnormally high levels of XNGNR1, which can result in pre-mature neuronal differentiation.  相似文献   

5.
6.
7.
Thyroid hormone (T3) influences cell proliferation, death and differentiation during development of the central nervous system (CNS). Hormone action is mediated by T3 receptors (TR) of which there are two subtypes, TRα and TRβ. Specific roles for TR subtypes in CNS development are poorly understood. We analyzed involvement of TRα and TRβ in neural cell proliferation during metamorphosis of Xenopus laevis. Cell proliferation in the ventricular/subventricular neurogenic zones of the tadpole brain increased dramatically during metamorphosis. This increase was dependent on T3 until mid-prometamorphosis, after which cell proliferation decreased and became refractory to T3. Using double labeling fluorescent histochemistry with confocal microscopy we found TRα expressed throughout the tadpole brain, with strongest expression in proliferating cells. By contrast, TRβ was expressed predominantly outside of neurogenic zones. To corroborate the histochemical results we transfected living tadpole brain with a Xenopus TRβ promoter-EGFP plasmid and found that most EGFP expressing cells were not dividing. Lastly, treatment with the TRα selective agonist CO23 increased brain cell proliferation; whereas, treatment with the TRβ-selective agonists GC1 or GC24 did not. Our findings support the view that T3 acts to induce cell proliferation in the tadpole brain predominantly, if not exclusively, via TRα.  相似文献   

8.
Neph3 (filtrin) is a membrane protein expressed in the glomerular epithelial cells (podocytes), but its role in the glomerulus is still largely unknown. To characterize the function of Neph3 in the glomerulus, we employed the zebrafish as a model system. Here we show that the expression of neph3 in pronephros starts before the onset of nephrin and podocin expression, peaks when the nephron primordium differentiates into glomerulus and tubulus, and is then downregulated upon glomerular maturation. By histology, we found that neph3 is specifically expressed in pronephric podocytes at 36 hpf. Furthermore, disruption of neph3 expression by antisense morpholino oligonucleotides results in distorted body curvature and transient pericardial edema, the latter likely reflecting perturbation of glomerular osmoregulatory function. Histological analysis of neph3 morphants reveals altered glomerular morphology and dilated pronephric tubules. The phenotype of neph3 morphants, curved body and pericardial edema, is rescued by wild-type zebrafish neph3 mRNA. In addition to glomerulus, neph3 is highly expressed in the developing brain and specific regions of mature midbrain and hindbrain. In line with this, neph3 morphants show aberrant brain morphology. Collectively, the expression of neph3 in glomerulus and brain together with the morphant phenotype imply that neph3 is a pleiotropic gene active during distinct stages of tissue differentiation and associates directly in the regulation of both glomerular and neural development.  相似文献   

9.
An important mechanism of neuronal plasticity is neurogenesis, which occurs during the embryonic period, forming the brain and its structure, and in the postnatal period, providing repair processes and participating in the mechanisms of memory consolidation. Adult neurogenesis in mammals, including humans, is limited in two specific brain areas, the lateral walls of the lateral ventricles (subventricular zone) and the granular layer of the dentate gyrus of the hippocampus (subgranular zone). Neural stem cells (NSC), self-renewing, multipotent progenitor cells, are formed in these zones. Neural stem cells are capable of differentiating into the basic cell types of the nervous system. In addition, NSC may have neurogenic features and non-specific non-neurogenic functions aimed at maintaining the homeostasis of the brain. The microenvironment formed in neurogenic niches has importance maintaining populations of NSC and regulating differentiation into neural or glial cells via cell-to-cell interactions and microenvironmental signals. The vascular microenvironment in neurogenic niches are integrated by signaling molecules secreted from endothelial cells in the blood vessels of the brain or by direct contact with these cells. Accumulation of astrocytes in neurogenic niches if also of importance and leads to activation of neurogenesis. Dysregulation of neurogenesis contributes to the formation of neurological deficits observed in neurodegenerative diseases. Targeting regulation of neurogenesis could be the basis of new protocols of neuroregeneration.  相似文献   

10.
Adult neurogenesis and neuronal regeneration in the brain of teleost fish   总被引:3,自引:0,他引:3  
Whereas adult neurogenesis appears to be a universal phenomenon in the vertebrate brain, enormous differences exist in neurogenic potential between “lower” and “higher” vertebrates. Studies in the gymnotiform fish Apteronotus leptorhynchus and in zebrafish have indicated that the relative number of new cells, as well as the number of neurogenic sites, are at least one, if not two, orders of magnitude larger in teleosts than in mammals. In teleosts, these neurogenic sites include brain regions homologous to the mammalian hippocampus and olfactory bulb, both of which have consistently exhibited neurogenesis in all species examined thus far. The source of the new cells in the teleostean brain are intrinsic stem cells that give rise to both glial cells and neurons. In several brain regions, the young cells migrate, guided by radial glial fibers, to specific target areas where they integrate into existing neural networks. Approximately half of the new cells survive for the rest of the fish’s life, whereas the other half are eliminated through apoptotic cell death. A potential mechanism regulating development of the new cells is provided by somatic genomic alterations. The generation of new cells, together with elimination of damaged cells through apoptosis, also enables teleost fish rapid and efficient neuronal regeneration after brain injuries. Proteome analysis has identified a number of proteins potentially involved in the individual regenerative processes. Comparative analysis has suggested that differences between teleosts and mammals in the growth of muscles and sensory organs are key to explain the differences in adult neurogenesis that evolved during phylogenetic development of the two taxa.  相似文献   

11.
12.
13.
14.
15.
16.
In the adult mammalian brain, the ability to minimize secondary cell death after injury, and to repair nervous tissue through generation of new neurons, is severely compromised. By contrast, certain taxa of non-mammalian vertebrates possess an enormous potential for regeneration. Examination of one of these taxa, teleost fish, has revealed a close link between this phenomenon and constitutive adult neurogenesis. Key factors mediating successful regeneration appear to be: elimination of damaged cells by apoptosis, instead of necrosis; activation of mechanisms that prevent the occurrence of secondary cell death; increased production of new neurons that replace neurons lost to injury; and activation of developmental mechanisms that mediate directed migration of the new cells to the site of injury, the differentiation of the young cells, and their integration into the existing neural network. Comparative analysis has suggested that constitutive adult neurogenesis is a primitive vertebrate trait, the main function of which has been to ensure a numerical matching between muscle fibers/sensory receptor cells and central elements involved in motor control/processing of sensory information associated with these peripheral elements. It is hypothesized that, when in the course of the evolution of mammals a major shift in the growth pattern from hyperplasia to hypertrophy took place, the number of neurogenic brain regions and new neurons markedly decreased. As a consequence, the potential for neuronal regeneration was greatly reduced, but remnants of neurogenic areas have persisted in the adult mammalian brain in form of quiescent stem cells. It is likely that the study of regeneration-competent taxa will provide important information on how to activate intrinsic mechanisms for successful brain regeneration in humans.  相似文献   

17.
A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA-NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved.  相似文献   

18.
In vertebrates, little is known on the role of programmed cell death (PCD) occurring within the population of dividing neural precursors and newly formed neuroblasts during early neural development. During primary neurogenesis, PCD takes place within the neuroectoderm of Xenopus embryos in a reproducible stereotypic pattern, suggesting a role for PCD during the early development of the CNS. We find that the spatio-temporal pattern of PCD is unaffected in embryos in which cell proliferation has been blocked and whose neuroecotoderm contains half the normal number of cells. This shows that PCD is not dependent on cell division. It further suggests that PCD does not solely function to regulate absolute cell numbers within the neuroectoderm. We demonstrate that PCD can be reproducibly inhibited in vivo during primary neurogenesis by the overexpression of human Bcl-2. Following PCD inhibition, normal neurogenesis is disrupted, as seen by the expansion of the expression domains of XSox-2, XZicr-2, XNgnr-1, XMyT-1, and N-Tubulin, XNgnr-1 being the most affected. PCD inhibition, however, did not affect the outcome of lateral inhibition. We propose, then, that PCD regulates primary neurogenesis at the level of neuronal determination.  相似文献   

19.
Cerebellar granule cells, the most abundant neurons in the mammalian brain, arise in the rhombic lip located at the roof of the brain's fourth ventricle. Bordering the rhombic lip is the choroid plexus, a non-neuronal structure, composed of blood vessels enveloped by epithelial cells. Here, we show a striking decrease in neural differentiation of rhombic lip-derived cells, which failed to extend neuritic processes and attenuate Math1 promoter activity, when co-cultured with choroid plexus cells. Moreover, a blocking antibody against BMP7, a morphogenetic protein expressed in the choroid plexus, blocked the inhibitory effect of the choroid plexus, whereas purified BMP7 mimicked this effect, demonstrating causal involvement of BMP. On the other hand, the BMP antagonist NBL1 promoted neurogenesis in rhombic lip cultures from Math1 null mice displaying arrested differentiation. Our data indicate that besides its secretory and barrier functions, the choroid plexus has a novel role in attenuating the differentiation of adjacent neural progenitors.  相似文献   

20.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号