首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The synaptic vesicle-associated synapsin proteins may participate in synaptic transmission, but their exact functional role(s) here remain(s) uncertain. We here briefly describe the important characteristics of the synapsin proteins, and review recent studies on transgenic mice devoid of the gene products encoded by the synapsin I and II genes, where both neurochemical, cell biological and electrophysiological methods have been employed. We present evidence for synapsin effects on both neurotransmitter synthesis and homeostasis, as well as on synaptic vesicle development and functions. Moreover, we describe physiological analyses of excitatory glutamatergic hippocampal synapses where a novel synapsin-dependent delayed response enhancement (DRE) phase occurs, and demonstrate the postnatal developmental patterns of both frequency facilitations and DRE responses. Finally, we report synapsin I and II effects in distinct excitatory glutamatergic synapses in the hippocampus, and indicate that synapsin-dependent modulations of synaptic function may use distinct presynaptic response patterns in order to induce different classes of presynaptic plasticity.  相似文献   

2.
O-GlcNAc is a carbohydrate modification found on cytosolic and nuclear proteins. Our previous findings implicated O-GlcNAc in hippocampal presynaptic plasticity. An important mechanism in presynaptic plasticity is the establishment of the reserve pool of synaptic vesicles (RPSV). Dynamic association of synapsin I with synaptic vesicles (SVs) regulates the size and release of RPSV. Disruption of synapsin I function results in reduced size of the RPSV, increased synaptic depression, memory deficits, and epilepsy. Here, we investigate whether O-GlcNAc directly regulates synapsin I function in presynaptic plasticity. We found that synapsin I is modified by O-GlcNAc during hippocampal synaptogenesis in the rat. We identified three novel O-GlcNAc sites on synapsin I, two of which are known Ca2+/calmodulin-dependent protein kinase II phosphorylation sites. All O-GlcNAc sites mapped within the regulatory regions on synapsin I. Expression of synapsin I where a single O-GlcNAc site Thr-87 was mutated to alanine in primary hippocampal neurons dramatically increased localization of synapsin I to synapses, increased density of SV clusters along axons, and the size of the RPSV, suggesting that O-GlcNAcylation of synapsin I at Thr-87 may be a mechanism to modulate presynaptic plasticity. Thr-87 is located within an amphipathic lipid-packing sensor (ALPS) motif, which participates in targeting of synapsin I to synapses by contributing to the binding of synapsin I to SVs. We discuss the possibility that O-GlcNAcylation of Thr-87 interferes with folding of the ALPS motif, providing a means for regulating the association of synapsin I with SVs as a mechanism contributing to synapsin I localization and RPSV generation.  相似文献   

3.
Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA), suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.  相似文献   

4.
Synapsins are abundant nerve terminal proteins present at all synapses except for ribbon synapses, e.g. photoreceptor cell synapses. Multiple functions have been proposed for synapsins, including clustering of synaptic vesicles and regulation of synaptic vesicle exocytosis. To investigate the physiological functions of synapsin and to ascertain which domains of synapsin are involved in synaptic targeting in vivo, we expressed synapsin Ib and its N- and C-terminal domains in the photoreceptor cells of transgenic mice. In these cells synapsin Ib is targeted efficiently to synaptic vesicles but has no significant effect on the development, structure or physiology of the synapses. This suggests that synapsin I does not have dominant physiological or morphoregulatory functions at these synapses. Full-length synapsin Ib and the N-terminal domains of synapsin Ib but not its C-terminal domains are transported to synapses, revealing that the molecular apparatus for synaptic targeting of synapsins is also present in cells which form ribbon synapses that normally lack synapsins. This apparatus appears to utilize the conserved N-terminal domains that are shared between all synapsins.  相似文献   

5.
Actin plays important roles in a number of synaptic processes, including synaptic vesicle organization and exocytosis, mobility of postsynaptic receptors, and synaptic plasticity. However, little is known about the mechanisms that control actin at synapses. Actin dynamics crucially depend on LIM kinase 1 (LIMK1) that controls the activity of the actin depolymerizing proteins of the ADF/cofilin family. While analyses of mouse mutants revealed the importance of LIMK1 for both pre- and postsynaptic mechanisms, the ADF/cofilin family member n-cofilin appears to be relevant merely for postsynaptic plasticity, and not for presynaptic physiology. By means of immunogold electron microscopy and immunocytochemistry, we here demonstrate the presence of ADF (actin depolymerizing factor), a close homolog of n-cofilin, in excitatory synapses, where it is particularly enriched in presynaptic terminals. Surprisingly, genetic ablation of ADF in mice had no adverse effects on synapse structure or density as assessed by electron microscopy and by the morphological analysis of Golgi-stained hippocampal pyramidal cells. Moreover, a series of electrophysiological recordings in acute hippocampal slices revealed that presynaptic recruitment and exocytosis of synaptic vesicles as well as postsynaptic plasticity were unchanged in ADF mutant mice. The lack of synaptic defects may be explained by the elevated n-cofilin levels observed in synaptic structures of ADF mutants. Indeed, synaptic actin regulation was impaired in compound mutants lacking both ADF and n-cofilin, but not in ADF single mutants. From our results we conclude that n-cofilin can compensate for the loss of ADF in excitatory synapses. Further, our data suggest that ADF and n-cofilin cooperate in controlling synaptic actin content.  相似文献   

6.
《The Journal of cell biology》1995,131(6):1789-1800
Synapsin I is one of the major synaptic vesicle-associated proteins. Previous experiments implicated its crucial role in synaptogenesis and transmitter release. To better define the role of synapsin I in vivo, we used gene targeting to disrupt the murine synapsin I gene. Mutant mice lacking synapsin I appeared to develop normally and did not have gross anatomical abnormalities. However, when we examined the presynaptic structure of the hippocampal CA3 field in detail, we found that the sizes of mossy fiber giant terminals were significantly smaller, the number of synaptic vesicles became reduced, and the presynaptic structures altered, although the mossy fiber long-term potentiation remained intact. These results suggest significant contribution of synapsin I to the formation and maintenance of the presynaptic structure.  相似文献   

7.
The axoplasm at the presynaptic active zone of excitatory synapses between parallel fibers and Purkinje cell spines contains a meshwork of distinct filaments intermingled with synaptic vesicles, seen most clearly after the rapid freezing, freeze-etch technique of tissue preparation. One set of filaments extends radially from synaptic vesicles and intersects similar filaments associated with vesicles as well as larger filaments arising from the presynaptic membrane. The small, vesicle-associated filaments appear to link synaptic vesicles to one another and to enmesh them in the vicinity of the synaptic junction. The vesicle-associated filaments could be synapsin I because they have the same molecular dimensions and are distributed in the same pattern as synapsin I immunoreactivity.  相似文献   

8.
9.
Phosphorylation of synapsin I by CaMKII has been reported to mobilize synaptic vesicles from the reserve pool. In the present study, the distributions of α-CaMKII and of synapsin I were compared in synaptic boutons of unstimulated and stimulated hippocampal neurons in culture by immunogold electron microscopy. CaMKII and synapsin I are located in separate domains in presynaptic terminals of unstimulated neurons. Label for α -CaMKII typically surrounds synaptic vesicle clusters and is absent from the inside of the cluster in control synapses. In contrast, intense labeling for synapsin I is found within the vesicle clusters. Following 2 minutes of depolarization in high K+, synaptic vesicles decluster and CaMKII label disperses and mingles with vesicles and synapsin I. These results indicate that, under resting conditions, CaMKII has limited access to the synapsin I in synaptic vesicle clusters. The peripheral distribution of CaMKII around vesicle clusters suggests that CaMKII-mediated declustering progresses from the periphery towards the center, with the depth of penetration into the synaptic vesicle cluster depending on the duration of CaMKII activation. Depolarization also promotes a significant increase in CaMKII immunolabel near the presynaptic active zone. Activity-induced redistribution of CaMKII leaves it in a position to facilitate phosphorylation of additional presynaptic proteins regulating neurotransmitter release.  相似文献   

10.
The synapsin family in mammals consists of at least 10 isoforms encoded by three distinct genes and composed by a mosaic of conserved and variable domains. Synapsins, although not essential for the basic development and functioning of neuronal networks, are extremely important for the fine-tuning of SV cycling and neuronal plasticity.Single, double and triple synapsin knockout mice, with the notable exception of the synapsin III knockout mice, show a severe epileptic phenotype without gross alterations in brain morphology and connectivity. However, the molecular and physiological mechanisms underlying the pathogenesis of the epileptic phenotype observed in synapsin deficient mice are still far from being elucidated. In this review, we summarize the current knowledge about the role of synapsins in the regulation of network excitability and about the molecular mechanism leading to epileptic phenotype in mouse lines lacking one or more synapsin isoforms. The current evidences indicate that synapsins exert distinct roles in excitatory versus inhibitory synapses by differentially affecting crucial steps of presynaptic physiology and by this mean participate in the determination of network hyperexcitability.  相似文献   

11.
Short-term synaptic plasticity (STP) is an important mechanism for modifying neural circuits during computation. Although STP is much studied, its role in the processing of complex natural spike patterns is unknown. Here we analyze the responses of excitatory and inhibitory hippocampal synapses to natural spike trains at near-physiological temperatures. Our results show that excitatory and inhibitory synapses express complementary sets of STP components that selectively change synaptic strength during epochs of high-frequency discharge associated with hippocampal place fields. In both types of synapses, synaptic strength rapidly alternates between a near-constant level during low activity and another near-constant, but elevated (for excitatory synapses) or reduced (for inhibitory synapses) level during high-frequency epochs. These history-dependent changes in synaptic strength are largely independent of the particular temporal pattern within the discharges, and occur concomitantly in the two types of synapses. When excitatory and feed-forward inhibitory synapses are co-activated within the hippocampal feed-forward circuit unit, the net effect of their complementary STP is an additional increase in the gain of excitatory synapses during high-frequency discharges via selective disinhibition. Thus, excitatory and feed-forward inhibitory hippocampal synapses in vitro act synergistically as an adaptive filter that operates in a switch-like manner and is selective for high-frequency epochs.  相似文献   

12.
Pang ZP  Sun J  Rizo J  Maximov A  Südhof TC 《The EMBO journal》2006,25(10):2039-2050
Synaptotagmin 2 resembles synaptotagmin 1, the Ca2+ sensor for fast neurotransmitter release in forebrain synapses, but little is known about synaptotagmin 2 function. Here, we describe a severely ataxic mouse strain that harbors a single, destabilizing amino-acid substitution (I377N) in synaptotagmin 2. In Calyx of Held synapses, this mutation causes a delay and a decrease in Ca2+-induced but not in hypertonic sucrose-induced release, suggesting that synaptotagmin 2 mediates Ca2+ triggering of evoked release in brainstem synapses. Unexpectedly, we additionally observed in synaptotagmin 2 mutant synapses a dramatic increase in spontaneous release. Synaptotagmin 1-deficient excitatory and inhibitory cortical synapses also displayed a large increase in spontaneous release, demonstrating that this effect was shared among synaptotagmins 1 and 2. Our data suggest that synaptotagmin 1 and 2 perform equivalent functions in the Ca2+ triggering of action potential-induced release and in the restriction of spontaneous release, consistent with a general role of synaptotagmins in controlling 'release slots' for synaptic vesicles at the active zone.  相似文献   

13.
B Lu  P Greengard  M M Poo 《Neuron》1992,8(3):521-529
We have investigated the possible role of synapsin I, a nerve terminal-specific protein, in the maturation of neuromuscular synapses in Xenopus cell cultures. Purified synapsin I was loaded into embryonic spinal neurons by injection of the protein into one of the early blastomeres of a Xenopus embryo. At synapses made by synapsin I-loaded neurons, spontaneous synaptic currents occurred with higher frequency and amplitude, and the amplitude exhibited an earlier appearance of a bell-shaped distribution. These characteristics are indicative of more mature quantal secretion. Impulse-evoked synaptic currents also showed a significant increase in amplitude. Using cell manipulation techniques, enhanced transmitter release from synapsin I-loaded neurons was shown to occur at the onset of synaptogenesis, suggesting a presynaptic developmental action of synapsin I prior to synaptic contact. Taken together, these results suggest that endogenous synapsin I may participate in the functional maturation of synapses.  相似文献   

14.
Notch signaling in the nervous system is often regarded as a developmental pathway. However, recent studies have suggested that Notch is associated with neuronal discharges. Here, focusing on temporal lobe epilepsy, we found that Notch signaling was activated in the kainic acid (KA)-induced epilepsy model and in human epileptogenic tissues. Using an acute model of seizures, we showed that DAPT, an inhibitor of Notch, inhibited ictal activity. In contrast, pretreatment with exogenous Jagged1 to elevate Notch signaling before KA application had proconvulsant effects. In vivo, we demonstrated that the impacts of activated Notch signaling on seizures can in part be attributed to the regulatory role of Notch signaling on excitatory synaptic activity in CA1 pyramidal neurons. In vitro, we found that DAPT treatment impaired synaptic vesicle endocytosis in cultured hippocampal neurons. Taken together, our findings suggest a correlation between aberrant Notch signaling and epileptic seizures. Notch signaling is up-regulated in response to seizure activity, and its activation further promotes neuronal excitation of CA1 pyramidal neurons in acute seizures.  相似文献   

15.
The synapse-bearing nerve terminals of the opener muscle of the crayfish Procambarus were reconstructed using electron micrographs of regions which had been serially sectioned. The branching patterns of the terminals of excitatory and inhibitory axons and the locations and sizes of neuromuscular and axo-axonal synapses were studied. Excitatory and inhibitory synapses could be distinguished not only on the basis of differences in synaptic vesicles, but also by a difference in density of pre- and postsynaptic membranes. Synapses of both axons usually had one or more sharply localized presynaptic "dense bodies" around which synaptic vesicles appeared to cluster. Some synapses did not have the dense bodies. These structures may be involved in the physiological activity of the synapse. Excitatory axon terminals had more synapses, and a larger percentage of terminal surface area devoted to synaptic contacts, than inhibitory axon terminals. However, the largest synapses of the inhibitory axon exceeded in surface area those of the excitatory axon. Both axons had many side branches coming from the main terminal; often, the side branches were joined to the main terminal by narrow necks. A greater percentage of surface area was devoted to synapses in side branches than in the main terminal. Only a small fraction of total surface area was devoted to axo-axonal synapses, but these were often located at narrow necks or constrictions of the excitatory axon. This arrangement would result in effective blockage of spike invasion of regions of the terminal distal to the synapse, and would allow relatively few synapses to exert a powerful effect on transmitter release from the excitatory axon. A hypothesis to account for the development of the neuromuscular apparatus is presented, in which it is suggested that production of new synapses is more important than enlargement of old ones as a mechanism for allowing the axon to adjust transmitter output to the functional needs of the muscle.  相似文献   

16.
It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.  相似文献   

17.
The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.  相似文献   

18.
Liu G  Choi S  Tsien RW 《Neuron》1999,22(2):395-409
To understand the elementary unit of synaptic communication between CNS neurons, one must know what causes the variability of quantal postsynaptic currents and whether unitary packets of transmitter saturate postsynaptic receptors. We studied single excitatory synapses between hippocampal neurons in culture. Focal glutamate application at individual postsynaptic sites evoked currents (I(glu)) with little variability compared with quantal excitatory postsynaptic currents (EPSCs). The maximal I(glu) was >2-fold larger than the median EPSC. Thus, variations in [glu]cleft are the main source of variability in EPSC size, and glutamate receptors are generally far from saturation during quantal transmission. This conclusion was verified by molecular antagonism experiments in hippocampal cultures and slices. The general lack of glutamate receptor saturation leaves room for increases in [glu]cleft as a mechanism for synaptic plasticity.  相似文献   

19.
The localization of synapsin I in the rat adrenal medulla was studied using the light- and electronmicroscopic immunohistochemistry. By light microscopy, many dot-like reaction products for synapsin I were recognized to be distributed throughout the medullary tissue. The immunoelectron microscopy clearly revealed that gold particles for synapsin I accumulated in abundance in the nerve terminals forming synapses with the chromaffin cell, while the particles were not localized in the chromaffin cells at all. In the nerve terminal, the gold particles were localized exclusively in the region occupied by synaptic vesicles except for the region just beneath the presynaptic plasma membrane. The synaptic vesicles were frequently linked with the adjacent ones by filamentous structures implicated in synapsin I. It is concluded morphologically that synapsin I is a highly-specific protein for the genuine neuron, and is not detected even in the chromaffin cell which originates from the neural crest.  相似文献   

20.
Temporal lobe epilepsy (TLE) is a devastating disease in which aberrant synaptic plasticity plays a major role. We identify matrix metalloproteinase (MMP) 9 as a novel synaptic enzyme and a key pathogenic factor in two animal models of TLE: kainate-evoked epilepsy and pentylenetetrazole (PTZ) kindling-induced epilepsy. Notably, we show that the sensitivity to PTZ epileptogenesis is decreased in MMP-9 knockout mice but is increased in a novel line of transgenic rats overexpressing MMP-9. Immunoelectron microscopy reveals that MMP-9 associates with hippocampal dendritic spines bearing asymmetrical (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9 deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号