首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The mechanisms of glycolytic rate control during hibernation in the ground squirrel Spermophilus lateralis were investigated in four tissues: heart, liver, kidney, and leg muscle. Overall glycogen phosphorylase activity decreased significantly in liver and kidney to give 50% or 75% of the activity found in the corresponding euthermic organs, respectively. The concentration of fructose-2,6-bisphosphate (F-2,6-P2) decreased significantly in heart and leg muscle during hibernation to 50% and 80% of euthermic tissue concentrations, respectively, but remained constant in liver and kidney. The overall activity of pyruvate dehydrogenase (PDH) in heart and kidney from hibernators was only 4% of the corresponding euthermic values. Measurements of phosphofructokinase (PFK) and pyruvate kinase (PK) kinetic parameters in euthermic and hibernating animals showed that heart and skeletal muscle had typical rabbit skeletal M-type PFK and M1-type PK. Liver and kidney PFK were similar to the L-type enzyme from rabbit liver, whereas liver and kidney PK were similar to the M2 isozyme found primarily in rabbit kidney. The kinetic parameters of PFK and PK from euthermic vs hibernating animals were not statistically different. These data indicate that tissue-specific phosphorylation of glycogen phosphorylase and PDH, as well as changes in the concentration of F-2,6-P2 may be part of a general mechanism to coordinate glycolytic rate reduction in hibernating S. lateralis.Abbreviations ADP adenosine diphosphate - AMP adenosine monophosphate - ATP adenonine triphoshate - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F-6-P fructose 6-phosphate - F-1,6-P2 fructose 1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - K a activation coefficient - I50 concentration of inhibitor which reduces control activity by 50% - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PFK 6-phosphofructo-1-kinase - PK pyruvate kinase  相似文献   

2.
3.
4.
In this article, we report the effects of acute administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.7 micromol/kg (complex I), trans-[RuCl(2)(i-nic)(4)] (i-nic=4-pyridinecarboxylic acid) 13.6 micromol/kg (complex II), trans-[RuCl(2)(dinic)(4)] (dinic=3,5-pyridinedicarboxylic acid) 180.7 micromol/kg (complex III) and trans-[RuCl(2)(i-dinic)(4)]Cl (i-dinic=3,4-pyridinedicarboxylic acid) 180.7 micromol/kg (complex IV) on succinate dehydrogenase (SDH) and cytochrome oxidase (COX) activities in brain (hippocampus, striatum and cerebral cortex), heart, skeletal muscle, liver and kidney of rats. Our results showed that complex I inhibited SDH activity in hippocampus, cerebral cortex, heart and liver; and inhibited COX in heart and kidney. Complex II inhibited SDH in heart and hippocampus; COX was inhibited in hippocampus, heart, liver and kidney. SDH activity was inhibited by complex III in heart, muscle, liver and kidney. However, COX activity was increased in hippocampus, striatum, cerebral cortex and kidney. Complex IV inhibited SDH activity in muscle and liver; COX activity was inhibited in kidney and increased in hippocampus, striatum and cerebral cortex. In a general manner, the complexes tested in this work decrease the activities of SDH and COX in heart, skeletal muscle, liver and kidney. In brain, complexes I and II were shown to be inhibitors and complexes III and IV activators of these enzymes. In vitro studies showed that the ruthenium complexes III and IV did not alter COX activity in kidney, but activated the enzyme in hippocampus, striatum and cerebral cortex, suggesting that these complexes present a direct action on COX in brain.  相似文献   

5.
The present work aimed to contribute to the understanding of the adaptation of the glycolytic pathway in tissues of frog Rana ridibunda and land snail species Helix lucorum during seasonal hibernation. Moreover responses of glycolytic enzymes from cold acclimated R. ridibunda and H. lucorum were studied as well. The drop in Po2 in the blood of hibernated frogs and land snails indicated lower oxygen consumption and a decrease in their metabolic rate. The activities of glycolytic enzymes indicated that hibernation had a differential effect on the glycolyis in the two species studied and also in the tissues of the same species. The activity of l-LDH decreased significantly in the skeletal muscle and heart of hibernated R. ridibunda indicating a low glycolytic potential. Similar biochemical responses were observed in the same tissues during cold acclimation. The continuous increase in the activities of glycolytic enzymes studied, except for HK, might indicate a compensation for the impacts of low temperature on the enzymatic activities. In contrast to R. ridibunda, the activities of the enzymes increased and remained at higher levels than those of the prehibernation controls indicating maintenance of glycolytic potential in the tissues of hibernating land snails.  相似文献   

6.
1. Lactate dehydrogenase (LDH) was isolated from pectoral or flight muscle, liver and heart of hibernating and normothermic bats, Myotis lucifugus. 2. Activities at high substrate concentrations and the interactions between substrate and enzyme were studied to evaluate possible adaptations associated with the extended period of depressed metabolism of this bat. 3. Activity levels in all tissues decreased with hibernation, although the magnitude was dependent upon both temperature and substrate concentration. In general, the extent of decrease was in the order pectoral muscle greater than liver much greater than heart. 4. No correlation was found between the temperature sensitivity of the tissue LDHs as estimated by Ea-values, and the physiological state. 5. However, affinity parameters as estimated by Km-values were less temperature sensitive in hibernator tissues in contrast to the marked perturbations exhibited at temperature extremes in the normotherm enzymes. 6. It is suggested that changes in subunit quantities are in part responsible for these kinetic differences, and not major qualitative isozyme changes. 7. The net result of these effects is a reduced carbon flux to lactate during hibernation, but the maintenance of a potential for LDH catalyses during arousal.  相似文献   

7.
Heterocyclic amines are formed during the cooking of foods rich in protein and can be metabolically converted into cytotoxic and mutagenic compounds. These "cooked-food mutagens" constitute a potential health hazard because DNA damage arising from dietary exposure to heterocyclic amines can modify cell genomes and thereby affect future organ function. To determine enzymes responsible for heterocyclic amine processing in mammalian tissues, we performed studies to measure genotoxic activation of the N-hydroxy form of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) --a common dietary mutagen. O-Acetyltransferase, sulfotransferase, kinase, and amino-acyl synthetase activities were assayed using substrate-specific reactions and cytosolic enzymes from newborn and adult rat heart, liver, spleen, kidney, brain, lung, and skeletal muscle. The resultant enzyme-specific DNA adduct formation was quantified via (32)P-postlabeling techniques. In biochemical assays with rat tissue cytosolic proteins, O-acetyltransferases were the enzymes most responsible for N-hydroxy-PhIP (N-OH-PhIP) activation. Compared to O-acetyltransferase activation, there was significantly less kinase activity and even lesser amounts of sulfotransferase activity. Proyl-tRNA synthetase activation of N-OH-PhIP was not detected. Comparing newborn rat tissues, the highest level of O-acetyltransferase mutagen activation was observed for neonatal heart tissue with activities ranked in the order of heart > kidney > lung > liver > skeletal muscle > brain > spleen. Enzymes from cultured neonatal myocytes displayed high O-acetyltransferase activities, similar to that observed for whole newborn heart. This tissue specificity suggests that neonatal cardiac myocytes might be at greater risk for damage from dietary heterocyclic amine mutagens than some other cell types. However, cytosolic enzymes from adult rat tissues exhibited a different O-acetyltransferase activation profile, such that liver > muscle > spleen > kidney > lung > brain > heart. These results demonstrated that enzymes involved in catalyzing PhIP-DNA adduct formation varied substantially in activity between tissues and in some tissues, changed significantly during development and aging. The results further suggest that O-acetyltransferases are the primary activators of N-OH-PhIP in rat tissues.  相似文献   

8.
The activity of superoxide dismutase (SOD) was studied in the liver, kidney, interscapular brown adipose tissue (IBAT), lung, heart and spleen of the active and hibernating ground squirrel (Citellus citellus). One group was examined immediately after the arousal from the hibernation. A considerable activity of this enzyme was found in homogenates of all tissues studied except the lung. This activity was lower in the liver and lung of the ground squirrel than in the rat (P less than 0.01). In the other tissues studied the enzyme activity was about the same level in both animals. In the ground squirrel hibernation didn't produce the significant change in SOD activity, as compared with the active state, except in the spleen. Tested immediately after the arousal, SOD activity was significantly higher in all tissues studied except in the IBAT, as compared with the hibernating ones (P less than 0.01).  相似文献   

9.
In the presence of malonyl-CoA, the overt form of carnitine palmitoyltransferase (CPT1) in mitochondria from rat liver, kidney cortex, heart, skeletal muscle and brown adipose tissue shows non-linear time courses, suggesting hysteretic behaviour. The pattern of this hysteresis is similar in heart, skeletal muscle and brown adipose tissue, but the hysteretic behaviour of the enzyme in these three tissues differs markedly from that seen in liver and kidney.  相似文献   

10.
In order to obtain a quantitative estimate of the capacity of the pancreatic islets for provision of cytoplasmic acetyl-coenzyme A and for the turnover of nicotinamide adenine dinucleotide phosphate and its reduced form (NADP+/NADPH), the following enzymes were assayed in islets taken from New Zealand Obese mice: adenosine triphosphate citrate lyase (EC 4.1.3.8), malate dehydrogenase (decarboxylating) (NADP+) (EC 1.1.1.40), glutathione reductase (EC 1.6.4.2) and isocitrate dehydrogenase (NADP+) (EC 1.1.1.42). In addition, the activity of isocitrate dehydrogenase (NAD+) (EC 1.1.1.41) was determined. For comparative purposes the activities in exocrine pancreas, liver, heart muscle, kidney cortex and skeletal muscle were also determined. Specimens of pancreatic islets and the other tissues were microdissected from freeze-dried sections. In comparison with the other tissues, adenosine triphosphate citrate lyase was particularly active in the islets. The NADP+/NAPH-converting enzymes had activities, which suggested a rapid turnover of the islet NADP+/NADPH pool.  相似文献   

11.
Telomerase activity was examined in two species of bat, Hipposideros armiger and Rousettus leschenaultia, which have similar body mass and lifespan but differ in use of hibernation. We found that telomerase activity was present in all tissues sampled, but it was greater in metabolically active tissues such as liver, spleen, and kidney. Of special interest is the raised activity found in the heterothermic bat H. armiger, and the hibernating bats having raised values for spleen, heart, and kidney. These findings show that maintenance of high levels of telomerase is an essential part of the regulation of cellular activities during hibernation.  相似文献   

12.
Mitochondria were isolated from rat adult liver, foetal liver, kidney cortex, heart, skeletal muscle and interscapular brown adipose tissue. DL-2-Bromopalmitoyl-CoA inhibited the overt form of carnitine palmitoyltransferase (CPT1) in heart, skeletal muscle and brown adipose tissue, with an IC50 value (concentration giving 50% inhibition) of 1.3-1.6 microM. By contrast, the IC50 value for inhibition of the kidney or adult liver enzyme was 0.08-0.1 microM. CPT1 in near-term foetal liver differed from that in adult liver in that the IC50 for inhibition by 2-bromopalmitoyl-CoA was 0.57 microM. It is suggested that there may be tissue-specific forms of the catalytic entity of CPT1 and that foetal liver may contain a mixture of adult liver- and muscle-type enzymes. In rats made hypothyroid by administration of propylthiouracil and an iodine-deficient diet, hepatic CPT1 activity was decreased by 83%. However, CPT1 activity in extrahepatic tissues showed no adaptive decrease in hypothyroidism.  相似文献   

13.
1. The activities in rat tissues of 3-oxo acid CoA-transferase (the first enzyme involved in acetoacetate utilization) were found to be highest in kidney and heart. In submaxillary and adrenal glands the activities were about one-quarter of those in kidney and heart. In brain it was about one-tenth and was less in lung, spleen, skeletal muscle and epididymal fat. No activity was detectable in liver. 2. The activities of acetoacetyl-CoA thiolase were found roughly to parallel those of the transferase except for liver and adrenal glands. The high activity in the latter two tissues may be explained by additional roles of thiolase, namely, the production of acetyl-CoA from fatty acids. 3. The activities of the two enzymes in tissues of mouse, gerbil, golden hamster, guinea pig and sheep were similar to those of rat tissues. The notable exception was the low activity of the transferase and thiolase in sheep heart and brain. 4. The activities of the transferase in rat tissues did not change appreciably in starvation, alloxan-diabetes or on fat-feeding, where the rates of ketone-body utilization are increased. Thiolase activity increased in kidney and heart on fat-feeding. 5. The activity of 3-hydroxybutyrate dehydrogenase did not change in rat brain during starvation. 6. The factors controlling the rate of ketone-body utilization are discussed. It is concluded that the activities of the relevant enzymes in the adult rat do not control the variations in the rate of ketone-body utilization that occur in starvation or alloxan-diabetes. The controlling factor in these situations is the concentration of the ketone bodies in plasma and tissues.  相似文献   

14.
Enzymes catalyzing peroxidase reaction of a lysosomal fraction in bone marrow, leucocytes, spleen, thyroid gland, stomach, kidney, heart, lungs, brain and skeletal muscle of mice were investigated by immunochemical methods. A high level of peroxidase activity was discovered in leucocytes, bone marrow, spleen, heart and lung, a lower activity appeared to be characteristic of liver, thyroid gland and kidney. The peroxidase activities in brain, skeletal muscle and stomach were low. The reaction of immunoprecipitation with myeloperoxidase-specific antiserum revealed considerable antigenic distinctions between the enzymes catalysing peroxidase reaction in various tissues of mice.  相似文献   

15.
16.
1. The total acid-soluble carnitine concentrations of four tissues from Merino sheep showed a wide variation not reported for other species. The concentrations were 134, 538, 3510 and 12900nmol/g wet wt. for liver, kidney cortex, heart and skeletal muscle (M. biceps femoris) respectively. 2. The concentration of acetyl-CoA was approximately equal to the concentration of free CoA in all four tissues and the concentration of acid-soluble CoA (free CoA plus acetyl-CoA) decreased in the order liver>kidney cortex>heart>skeletal muscle. 3. The total amount of acid-soluble carnitine in skeletal muscle of lambs was 40% of that in the adult sheep, whereas the concentration of acid-soluble CoA was 2.5 times as much. A similar inverse relationship between carnitine and CoA concentrations was observed when different muscles in the adult sheep were compared. 4. Carnitine was confined to the cytosol in all four tissues examined, whereas CoA was equally distributed between the mitochondria and cytosol in liver, approx. 25% was present in the cytosol in kidney cortex and virtually none in this fraction in heart and skeletal muscle. 5. Carnitine acetyltransferase (EC 2.3.1.7) was confined to the mitochondria in all four tissues and at least 90% of the activity was latent. 6. Acetate thiokinase (EC 6.2.1.1) was predominantly (90%) present in the cytosol in liver, but less than 10% was present in this fraction in heart and skeletal muscle. 7. In alloxan-diabetes, the concentration of acetylcarnitine was increased in all four tissues examined, but the total acid-soluble carnitine concentration was increased sevenfold in the liver and twofold in kidney cortex. 8. The concentration of acetyl-CoA was approximately equal to that of free CoA in the four tissues of the alloxan diabetic sheep, but the concentration of acid-soluble CoA in liver increased approximately twofold in alloxan-diabetes. 9. The relationship between CoA and carnitine and the role of carnitine acetyltransferase in the various tissues is discussed. The quantitative importance of carnitine in ruminant metabolism is also emphasized.  相似文献   

17.
D Glyceraldehyde 3 phosphatedehydrogenase(GAPDH ,EC 1.2 .1.12 )isakeyenzymeoftheglycolyticpathwaythatispresentinthecytosolofallorganismssofarstudied[1] .TheglycolyticGAPDHhasbeenremarkablyconservedduringevolution ,havingahomotetramericstructurewithsubunitsof 35 - 37kD[1] .GAPDHhasbeenisolatedfromavarietyofspecies[2 ] ,includingmesophilic ,moderatelythermophilicandhyperthermophilicmicroorganisms[3 ] .Theseenzymes ,whichdifferinthermalstability ,havebeenshowntobehighlysimilarinaminoacidse…  相似文献   

18.
Immunoblot analyses with antibodies against the peroxisomal beta-oxidation enzymes from rat liver showed the presence of these enzymes in rat and human liver and kidney and rat adrenal gland. The bifunctional protein could not be detected in muscle tissues or cultured muscle cells. Acyl-CoA oxidase was detected in rat heart and cultured human muscle cells. 3-Ketoacyl-CoA thiolase was also detected in human and rat heart and skeletal muscle; however, this enzyme was not detectable in skeletal muscle of Zellweger patients, in agreement with the absence of peroxisomal fatty acid oxidation.  相似文献   

19.
Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.  相似文献   

20.
Hibernating mammals exhibit oxidative stress resistance in brain, liver and other tissues. In many animals, cellular oxidative stress resistance is associated with enhanced expression of intracellular antioxidant enzymes. Intracellular antioxidant capacity may be upregulated during hibernation to protect against oxidative damage associated with the ischemia-reperfusion that occurs during transitions between torpor and arousal. We tested the hypothesis that the 13-lined ground squirrel (Spermophilus tridecemlineatus), upregulates intracellular antioxidant enzymes in major oxidative tissues during hibernation. The two major intracellular isoforms of superoxide dismutase (MnSOD and CuZnSOD), which catalyze the first step in superoxide detoxification, were quantified in heart, brain and liver tissue using immunodetection and an in-gel activity assay. However, no differences in SOD protein expression or activity were found between active and hibernating squirrels. Measurements of glutathione peroxidase and glutathione reductase, which catalyze hydrogen peroxide removal, were not broadly upregulated during hibernation. The activity of catalase, which catalyzes an alternative hydrogen peroxide detoxification pathway, was higher in heart and brain of torpid squirrels, but lower in liver. Taken together, these data do not support the hypothesis that hibernation is associated with enhanced oxidative stress resistance due to an upregulation of intracellular antioxidant enzymes in the major oxidative tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号