首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycosylation in room temperature ionic liquid is demonstrated using unprotected and unactivated donors. Modest yields of simple benzyl glycosides and disaccharides of glucose, mannose and N-acetylgalactosamine were obtained in 1-ethyl-3-methylimidazolium benzoate with Amberlite IR-120 (H(+)) resin or p-toluenesulfonic acid as promoters.  相似文献   

2.
The 1-ethyl-3-methylimidazolium-tetrafluoroborate (EMI–BF4) room temperature ionic liquid was investigated with NMR techniques. Diffusion coefficients measured at temperatures ranging from 300 to 360 K indicate that phase-change occurred in the vicinity of 333 K, which is supported by 11B quadrupolar relaxation rates. This phase change is ascribed to the transformation of the diffusion particle from ‘discrete ion-pair’ to ‘individual ion’ at temperatures above 335 K due to decomposition of the EMI–BF4 ion pair. Analysis of the 13C dipole–dipole relaxation rates identifies the formation of hydrogen bond (C2HF) between the counterions, EMI+ and BF4 −. This hydrogen bonding may have significant contribution to the higher viscosity of this ionic liquid in comparison with the EMI–AlCl4 ionic liquid at corresponding temperatures.  相似文献   

3.
《Process Biochemistry》2010,45(8):1375-1382
Enzymatic acylation reactions of flavonoids (rutin, esculin) with long chain fatty acids (palmitic, oleic acids) were carried out in 14 different ionic liquid media containing a range of cation and anion structures. Classification of RTILs according to flavonoid solubility (using COSMO-RS) was the basis for structural selection. Overall, anion selection had a far greater influence on lipase activity than choice of cationic moiety. RTILs containing TF2N, PF6 and BF4 anions were most successful as reaction media while RTILs containing anions with stronger solvating properties (i.e. H-bonding ability) resulted in decreased yields, likely due to increased interactions with the protein structure of the lipase. Biosynthesis of rutin proceeded much slower than of esculin. All-in-all, judicious selection of RTILs was central to achieving high yields (>98% after 6 days for TOMA·TF2N) since a balance must be struck that maximized flavonoid solubility with minimum negative impact on lipase activity. The process also benefitted from an increased reaction temperature which may have helped to reduced mass transfer limitations.  相似文献   

4.
We report the first example of conopeptide oxidation performed in a biocompatible ionic liquid, 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]), which enables the efficient formation of both hydrophilic and poorly water‐soluble conotoxins compared with conventional methods. Moreover, the method features a high‐concentration approach ultimately leading to higher yields at reduced separation effort. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (Eo) of −0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 μM with a detection limit of 0.14 μM at a signal/noise ratio of 3. The apparent Michaelis constant () for the electrocatalytic reaction was 22.6 μM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors.  相似文献   

6.
Time-resolved autofluorescence, Raman microspectroscopy, and scanning microprobe X-ray diffraction were combined in order to characterize lignocellulosic biomass from poplar trees and how it changes during treatment with the ionic liquid 1-n-ethyl-3-methylimidazolium acetate (EMIMAC) at room temperature. The EMIMAC penetrates the cell wall from the lumen, swelling the cell wall by about a factor of two towards the empty lumen. However, the middle lamella remains unchanged, preventing the cell wall from swelling outwards. During this swelling, most of the cellulose microfibrils are solubilized but chain migration is restricted and a small percentage of microfibrils persist. When the EMIMAC is expelled, the cellulose recrystallizes as microfibrils of cellulose I. There is little change in the relative chemical composition of the cell wall after treatment. The action of EMIMAC on the poplar cell wall at room temperature would therefore appear to be a reversible swelling and a reversible decrystallization of the cell wall.  相似文献   

7.
Natural oligosaccharide-derived room temperature ionic liquids (RTILs) were prepared from 1-ethyl-3-methylimidazolium hydroxide (EMIM·OH) and carboxymethylated chitosan (CM-chitosan) by acid–base neutralization reaction. These EMIM·CM-chitosan ionic liquids exhibited good ionic conductivity and thermal stability, as well as low glass transition temperature, implying their potential wide applications in direct electrochemistry, biosensors, and biocatalysis.  相似文献   

8.
Composite material based on room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6), sodium alginate (SA), and graphite was used to construct a novel horseradish peroxidase (HRP) biosensor for the determination of H2O2. The morphology of the as-prepared biosensor was characterized by scanning electron microscopy (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the process of the performance of the biosensor. Parameters affecting the performance of the biosensor, including the concentrations of o-aminophenol (OAP) and HRP and the pH value of substrate solution, were optimized. Under the optimized experimental conditions, H2O2 could be detected in a linear calibration range of 1.0 to 6.0 μM with a correlation coefficient of 0.9847 (n = 7) and a detection limit of 0.5 μM at a signal/noise ratio of 3. The prepared biosensor not only had economic and disposable property but also showed good detection precision, bioactivity, storage stability, and reproducibility.  相似文献   

9.
The interactions of the cellulose molecule with several anions, including acetate , alkyl phosphate, tetrafluoroborate and hexafluorophosphate anions which are most commonly involved in the imidazolium ionic liquids (ILs), have been studied by performing density functional theory calculations. Based on calculated geometries, energies, IR characteristics, and electronic properties of the cellulose-anion complexes, it is found that the strength of interactions of anions with cellulose follows the order: acetate anion > alkyl phosphate anion > tetrafluoroborate anion > hexafluorophosphate anion, which is consistent with the experimentally observed solubility trend of cellulose in the corresponding imidazolium-based ILs. The present study may provide basic aids to some extent for understanding the dissolution behavior of cellulose in the imidazolium-based ILs.  相似文献   

10.
Electrospinning is a versatile process used to prepare micro- and nano- sized fibers from various polymers dissolved in volatile solvents. In this report, cellulose and cellulose-heparin composite fibers are prepared from nonvolatile room temperature ionic liquid (RTIL) solvents by electrospinning. RTILs are extracted from the biopolymer fiber after the fiber formation using a cosolvent. Micron to nanometer sized, branched fibers were obtained from 10% (w/w) concentration of polysaccharide biopolymer in RTIL solution with an applied voltage of 15-20 kV. Cellulose-heparin composite fibers showed anticoagulant activity, demonstrating that the bioactivity of heparin remained unaffected even on exposure to a high voltage involved in electrospinning.  相似文献   

11.
Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biofuels and chemical feedstocks. However, the high cost of ILs is a key deterrent to their practical application. Here, we show that acetate based ILs are effective in dramatically reducing the recalcitrance of corn stover toward enzymatic polysaccharide hydrolysis even at loadings of biomass as high as 50% by weight. Under these conditions, the IL serves more as a pretreatment additive rather than a true solvent. Pretreatment of corn stover with 1‐ethyl‐3‐methylimidizolium acetate ([Emim] [OAc]) at 125 ± 5°C for 1 h resulted in a dramatic reduction of cellulose crystallinity (up to 52%) and extraction of lignin (up to 44%). Enzymatic hydrolysis of the IL‐treated biomass was performed with a common commercial cellulase/xylanase from Trichoderma reesei and a commercial β‐glucosidase, and resulted in fermentable sugar yields of ~80% for glucose and ~50% for xylose at corn stover loadings up to 33% (w/w) and 55% and 34% for glucose and xylose, respectively, at 50% (w/w) biomass loading. Similar results were observed for the IL‐facilitated pretreatment of switchgrass, poplar, and the highly recalcitrant hardwood, maple. At 4.8% (w/w) corn stover, [Emim][OAc] can be readily reused up to 10 times without removal of extracted components, such as lignin, with no effect on subsequent fermentable sugar yields. A significant reduction in the amount of IL combined with facile recycling has the potential to enable ILs to be used in large‐scale biomass pretreatment. Biotechnol. Bioeng. 2011;108: 2865–2875. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
The incremental addition of titanium(III) citrate to H-chain homopolymers of human ferritin results in the formation of 1.5–6.5-nm particles of amorphous TiO2 within the nanocage of the protein. The mineralization conditions are mild, featuring ambient temperature and no need for photochemical activation. Low ratios of titanium to protein favor intraprotein mineralization, and the products are characterized by stained and unstained transmission electron microscopy, UV–vis spectroscopy, dynamic light scattering, analytical ultracentrifugation, and metal analysis. With up to 1,000 equiv of metal, there is no change to the protein hydrodynamic radius or diffusion constant. There is, however, a systematic shift in the sedimentation coefficient, which confirms mineralization within the protein core.  相似文献   

13.
The scope and limitations of imidazolium-based ionic liquids as room temperature glycosylation promoters have been studied. Herein, we report the effects of modifying the structure of the imidazolium cation and how important the choice of counter ion becomes on model glycosylation reactions of thioglycosides at room temperature in the presence of N-iodosuccinimide (NIS).  相似文献   

14.
Hyperbranched poly-l-lactides have been synthesized by eROP in [C4MIM][PF6] media. The bis(hydroxymethyl)butyric acid molecule was used as the AB2 core co-monomer and immobilized lipase B from Candida antarctica as biocatalyst. The degree of branching could be controlled by the reaction conditions, with the maximum achieved being 0.21. The successful achievement of the hyperbranched structure is attributed to the high solvent power of substrates and products in the ionic liquid besides sustained lipase activity.  相似文献   

15.
The effects of 12 imidazolium room temperature ionic liquids (RTILs), including [Cnmim]BF4, [Cnmim]PF6, and [Cnmim]Br (n = 4, 6, 8, 10), on the fluorescent properties of norfloxacin were examined. The fluorescence intensity of norfloxacin at 0.1 mg/L in methanol significantly increased with the addition of [Cnmim]BF4 and [Cnmim]PF6 into the solvent at 0.1–15.0%. The sensitizing effect may result from the higher viscosity of the RTILs–methanol mixture solvent than that of the methanol itself. However, the quenching effect on fluorescence of norfloxacin was observed in [Cnmim]Br–methanol solvent. The fluorescence intensities of norfloxacin decreased with an increase in the alkyl chain length of the alkyl substituents of the imidazolium ring of RTILs. The main interaction between the RTILs and norfloxacin is not by hydrogen bonding. The fact, that some RTILs can significantly sensitize fluorescence of norfloxacin, indicates that RTILs could be a group of promising solvents for development of sensitive spectrofluorimetric methods for determination of norfloxacin at ultra‐trace levels in environmental samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This study demonstrates for the first time that the enzymatic hydrolysis of cellulose is drastically enhanced following ultrasonic pretreatment of lignocellulosic material in ionic liquids (ILs) when compared to conventional thermal pretreatment. Five types of ILs, 1-buthyl-3-methylimidazolium chloride (BmimCl), 1-allyl-3-methylimidazolium chloride (AmimCl), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDep), and 1-ethyl-3-methylimidazolium acetate (EmimOAc) were tested. Cellulose saccharification ratio was about 20% for kenaf powders pretreated in BmimCl, AmimCl, EmimCl, and EmimDep by conventional heating at 110 °C for 120 min. Conversely, 60-95% of cellulose was hydrolyzed to glucose, subsequent to ultrasonic pretreatment in the same ILs for 120 min at 25 °C. The cellulose saccharification ratio of kenaf powder in EmimOAc was 86% after only 15 min of the ultrasonic pretreatment at 25 °C, compared to only 47% in that case of thermal pretreatment in the IL.  相似文献   

17.
The syntheses of poly-l-lactide (PLLA) and poly-l-lactide-co-glycolide (PLLGA) is reported in the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6] mediated by the enzyme lipase B from Candida antarctica (Novozyme 435). The highest PLLA yield (63%) was attained at 90 °C with a molecular weight (M n ) of 37.8 × 103 g/mol determined by size exclusion chromatography. This procedure produced relatively high crystalline polymers (up to 85% PLLA) as determined by DSC. In experiments at 90 °C product synthesis also occurred without biocatalyst, however, PLLA synthesis in [HMIM][PF6] at 65 °C followed only the enzymatic mechanism as ring opening was not observed without the enzyme. In addition, the enzymatic synthesis of PLLGA is first reported here using Novozyme 435 biocatalyst with up to 19% of lactyl units in the resulting copolymer as determined by NMR. Materials were also characterized by TGA, MALDI-TOF–MS, X-ray diffraction, polarimetry and rheology.  相似文献   

18.
Ray D  Mittal N  Chung WJ 《Carbohydrate research》2011,346(14):2145-2148
A convenient, mild and environment-friendly dehydration reaction of fructose in ionic liquid using phosphorous pentoxide (P2O5) has been investigated. The acidic nature of P2O5 along with its hygroscopic properties has been successfully utilized to afford 81.2% yield of 5-hydroxymethylfurfural (5-HMF) at 50 °C in 60 mins. Phosphoric acid yielded remarkably less 5-HMF even at higher temperature and longer reaction times. The reaction was optimized by varying different parameters and the results indicated that no rehydration products, such as levulinic acid or formic acid, were formed.  相似文献   

19.
It was shown that the laccase (LC) included into hydrophobic ionic liquid (IL) can be reused for the biotransformation of dihydroquercetin (DHQ). The physicochemical characteristics of DHQ oligomers synthesized using LC/IL did not differ from the characteristics of the oligomers obtained with native laccase. The synthesized oligomers have a number average molecular weight of 1050 g/mol and a polydispersity index of 1.41. Oligomers possess higher antioxidant activity than the monomer.  相似文献   

20.
A novel nanocomposite material of multiwalled carbon nanotubes (MWCNTs) and room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) was explored and used to construct a novel microperoxidase-11 (MP-11) biosensor for the determination of hydrogen peroxide (H2O2). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to characterize the performance of the biosensor. Under the optimized experimental conditions, H2O2 could be detected in a linear calibration range of 0.5 to 7.0 × 10−7 mol L−1 with a correlation coefficient of 0.9949 (n = 9) and a detection limit of 3.8 × 10−9 mol L−1 at 3σ. The modified electrodes displayed excellent electrochemical response, high sensitivity, long-term stability, and good bioactivity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号