首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Vpu protein of HIV-1 antagonizes BST-2 (tetherin), a broad spectrum effector of the innate immune response to viral infection, by an intermolecular interaction that maps genetically to the α-helical transmembrane domains (TMDs) of each protein. Here we utilize NMR spectroscopy to describe key features of the helix-helix pairing that underlies this interaction. The antagonism of BST-2 involves a sequence of three alanines and a tryptophan spaced at four residue intervals within the Vpu TMD helix. Responsiveness to Vpu involves bulky hydrophobic residues in the C-terminal region of the BST-2 TMD helix that likely fit between the alanines on the interactive face of Vpu. These aspects of Vpu and BST-2 form an anti-parallel, lipid-embedded helix-helix interface. Changes in human BST-2 that mimic sequences found in nonhuman primate orthologs unresponsive to Vpu change the tilt angle of the TMD in the lipid bilayer without abrogating its intrinsic ability to interact with Vpu. These data explain the mechanism by which HIV-1 evades a key aspect of innate immunity and the species specificity of Vpu using an anti-parallel helix-helix packing model.  相似文献   

2.
The cellular protein BST-2/CD317/Tetherin has been shown to inhibit the release of HIV-1 and other enveloped viruses from infected cells. The HIV-1 accessory protein Vpu binds to both BST-2 and βTrCP, a substrate-recognition subunit for the SCF (Skip1-Cullin1-F-box protein) E3 ubiquitin ligase complex. This interaction leads to both the degradation of BST-2 and the enhancement of viral egress. Recently BST-2 was shown to be ubiquitinated in this process. Here we have confirmed the Vpu- and βTrCP-dependent multi/polyubiquitination of BST-2. Ubiquitinated BST-2 accumulated in cells treated with a lysosomal inhibitor but not a proteasomal inhibitor. Additionally, we observed that a BST-2 mutant deleted for its cytosolically exposed lysine residues is also ubiquitinated. Subsequent experiments suggested that Vpu promotes BST-2 ubiquitination upon amino acid residues bearing hydroxyl- but not thiol-bearing side chains. However, a BST-2 mutant bearing substitutions for its cytoplasmically exposed Ser, Thr, and Lys residues was still down-regulated, ubiquitinated, and degraded in a Vpu-dependent manner. Our results suggest that Vpu may target either the BST-2 cytoplasmic Tyr residues or the NH(2) terminus itself for ubiquitination.  相似文献   

3.
Mehnert T  Routh A  Judge PJ  Lam YH  Fischer D  Watts A  Fischer WB 《Proteins》2008,70(4):1488-1497
Vpu from HIV-1 is an 81 amino acid type I integral membrane protein which consists of a cytoplasmic and a transmembrane (TM) domain. The TM domain is known to alter membrane permeability for ions and substrates when inserted into artificial membranes. Peptides corresponding to the TM domain of Vpu (Vpu(1-32)) and mutant peptides (Vpu(1-32)-W23L, Vpu(1-32)-R31V, Vpu(1-32)-S24L) have been synthesized and reconstituted into artificial lipid bilayers. All peptides show channel activity with a main conductance level of around 20 pS. Vpu(1-32)-W23L has a considerable flickering pattern in the recordings and longer open times than Vpu(1-32). Whilst recordings for Vpu(1-32)-R31V are almost indistinguishable from those of the WT peptide, recordings for Vpu(1-32)-S24L do not exhibit any noticeable channel activity. Recordings of WT peptide and Vpu(1-32)-W23L indicate Michaelis-Menten behavior when the salt concentration is increased. Both peptide channels follow the Eisenman series I, indicative for a weak ion channel with almost pore like characteristics.  相似文献   

4.
HIV‐1 Vpu modulates cellular transmembrane proteins to optimize viral replication and provide immune‐evasion, triggering ubiquitin‐mediated degradation of some targets but also modulating endosomal trafficking to deplete them from the plasma membrane. Interactions between Vpu and the heterotetrameric clathrin adaptor protein (AP) complexes AP‐1 and AP‐2 have been described, yet the molecular basis and functional roles of such interactions are incompletely defined. To investigate the trafficking signals encoded by Vpu, we fused the cytoplasmic domain (CD) of Vpu to the extracellular and transmembrane domains of the CD8 α‐chain. CD8‐VpuCD was rapidly endocytosed in a clathrin‐ and AP‐2‐dependent manner. Multiple determinants within the Vpu CD contributed to endocytic activity, including phosphoserines of the β‐TrCP binding site and a leucine‐based ExxxLV motif. Using recombinant proteins, we confirmed ExxxLV‐dependent binding of the Vpu CD to the α/σ2 subunit hemicomplex of AP‐2 and showed that this is enhanced by serine‐phosphorylation. Remarkably, the Vpu CD also bound directly to the medium (μ) subunits of AP‐2 and AP‐1; this interaction was dependent on serine‐phosphorylation of Vpu and on basic residues in the μ subunits. We propose that the flexibility with which Vpu binds AP complexes broadens the range of cellular targets that it can misdirect to the virus' advantage.   相似文献   

5.
MT1-MMP (membrane type 1-matrix metalloproteinase) plays important roles in cell growth and tumor invasion via mediating cleavage of MMP2/gelatinase A and a variety of substrates including type I collagen. BST-2 (bone marrow stromal cell antigen 2) is a membrane tetherin whose expression dramatically reduces the release of a broad range of enveloped viruses including HIV from infected cells. In this study, we provided evidence that both transient and IFN-α induced BST-2 could decrease the activity of MMP2 via binding to cellular MT1-MMP on its C-terminus and inhibiting its proteolytic activity; and finally block cell growth and migration. Zymography gel and Western blot experiments demonstrated that BST-2 decreased MMP2 activity, but no effect on the expression of MMP2 and MT1-MMP genes. Confocal and immunoprecipitation data showed that BST-2 co-localized and interacted with MT1-MMP. This interaction inhibited the proteolytic enzyme activity of MT1-MMP, and blocked the activation of proMMP2. Experimental results of C-terminus deletion mutant of MT1-MMP showed that activity of MMP2 was no change and also no interaction existed between the mutant and BST-2 after co-transfection with the mutant and BST-2. It meant that C-terminus of MT1-MMP played a key role in the interaction with BST-2. In addition, cell growth in 3D type I collagen gel lattice and cell migration were all inhibited by BST-2. Taken together, BST-2, as a membrane protein and a tetherin of enveloped viruses, was a novel inhibitor of MT1-MMP and could be considerable as an inhibitor of cancer cell growth and migration on clinic.  相似文献   

6.
The HIV-1 accessory protein Vpu counteracts a host factor that restricts virion release from infected cells. Here we show that the interferon-induced cellular protein BST-2/HM1.24/CD317 is such a factor. BST-2 is downregulated from the cell surface by Vpu, and BST-2 is specifically expressed in cells that support the vpu phenotype. Exogenous expression of BST-2 inhibits HIV-1 virion release, while suppression of BST-2 relieves the requirement for Vpu. Downregulation of BST-2 requires both the transmembrane/ion channel domain and conserved serines in the cytoplasmic domain of Vpu. Endogenous BST-2 colocalizes with the HIV-1 structural protein Gag in endosomes and at the plasma membrane, suggesting that BST-2 traps virions within and on infected cells. The unusual structure of BST-2, which includes a transmembrane domain and a lumenal GPI anchor, may allow it to retain nascent enveloped virions on cellular membranes, providing a mechanism of viral restriction counteracted by a specific viral accessory protein.  相似文献   

7.
Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2-81). Vpu(2-37) encompasses the N-terminal transmembrane alpha-helix; Vpu(2-51) spans the N-terminal transmembrane helix and the first cytoplasmic alpha-helix; Vpu(28-81) includes the entire cytoplasmic domain containing the two C-terminal amphipathic alpha-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane alpha-helix. The C-terminal alpha-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.  相似文献   

8.
9.
HIV-1, the etiologic agent of human AIDS, causes cell death in host and non-host cells via HIV-1 Vpr, one of its auxiliary gene product. HIV-1 Vpr can also cause cell cycle arrest in several cell types. The cellular processes that link HIV-1 Vpr to the cell death machinery are not well characterized. Here, we show that the C terminal portion of HIV-1 Vpr which encompasses amino acid residues 71-96 (HIV-1 Vpr(71-96)), also termed HIV-1 Vpr cell death causing peptide, is an activator of protein phosphatase-2A(1) when applied extracellularly to CD(4+) T cells. HIV-1 Vpr(71-96) is a direct activator of protein phosphatase-2A(1) that has been purified from CD(4+) T cells. Full length HIV-1 Vpr by itself does not cause the activation of protein phosphatase-2A(1) in vitro. HIV-1 Vpr(71-96) also causes the activation of protein phosphatase-2A(0) and protein phosphatase-2A(1) from brain, liver, and adipose tissues. These results indicate that HIV-1 can cause cell death of infected cells and non-infected host and non-host cells via HIV-1 Vpr derived C terminal peptide(s) which act(s) by cell penetration and targeting of a key controller of the cell death machinery, namely, protein phosphatase-2A(1). The activation of other members of the protein phosphatase-2A subfamily of enzymes which are involved in the control of several metabolic pathways in brain, liver, and adipose tissues by HIV-1 Vpr derived C terminal peptide(s) may underlie various metabolic disturbances that are associated with HIV-1 infection.  相似文献   

10.
11.
Chemokine receptors CCR5 and CXCR4 are the major coreceptors of HIV-1 infection and also play fundamental roles in leukocyte trafficking, metastasis, angiogenesis, and embyogenesis. Here, we show that transfection of CCR5 into CXCR4 and CD4 expressing 3T3 cells enhances the cell surface level of CXCR4. In CCR5 high expressing cells, cell surface level of CXCR4 was incompletely modulated in the presence of the CXCR4 ligand CXCL12/SDF-1alpha. CCR5 was resistant to ligand-dependent modulation with the CCR5 ligand CCL5/RANTES. Confocal laser microscopy revealed that CCR5 was colocalized with CXCR4 on the cell surface. In CD4 expressing CCR5 and CXCR4 double positive NIH 3T3 cells, immunoprecipitation followed by Western blot analysis revealed that CCR5 was associated with CXCR4 and CD4. CXCR4 and CCR5 were not co-immunoprecipitated in cells expressing CCR5 and CXCR4 but without CD4 expression. Compared to NIH 3T3CD4 cells expressing CXCR4, the entry of an HIV-1 X4 isolate (HCF) into NIH 3T3CD4 expressing both CXCR4 and CCR5 was reduced. Our data indicate that chemokine receptors interact with each other, which may modulate chemokine-chemokine receptor interactions and HIV-1 coreceptor functions.  相似文献   

12.
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.  相似文献   

13.
BST-2/CD317/tetherin is a host factor that inhibits HIV-1 release and is counteracted by HIV-1 Vpu. Structural studies indicate that the BST-2 ectodomain assumes a coiled-coil conformation. Here we studied the role of the BST-2 ectodomain for tethering function. First, we addressed the importance of the length and structure of the ectodomain by adding or substituting heterologous coiled-coil or non-coiled-coil sequences. We found that extending or replacing the BST-2 ectodomain using non-coiled-coil sequences resulted in loss of BST-2 function. Doubling the size of the BST-2 ectodomain by insertion of a heterologous coiled-coil motif or substituting the BST-2 coiled-coil domain with a heterologous coiled-coil motif maintained tethering function. Reductions in the size of the BST-2 coiled-coil domain were tolerated as well. In fact, deletion of the C-terminal half of the BST-2 ectodomain, including a series of seven consecutive heptad motifs did not abolish tethering function. However, slight changes in the positioning of deletions affecting the relative placing of charged or hydrophobic residues on the helix severely impacted the functional properties of BST-2. Overall, we conclude that the size of the BST-2 ectodomain is highly flexible and can be reduced or extended as long as the positioning of residues important for the stability of the dimer interface is maintained.  相似文献   

14.
In spite of 25 years of intensive research, no effective human immunodeficiency virus type 1 (HIV-1) vaccine has yet been developed. One reason for this is that investigators have concentrated mainly on the structural analysis of HIV-1 antigens because they assumed that it should be possible to deduce vaccine-relevant immunogens from the structure of viral antigens bound to neutralizing monoclonal antibodies. This unwarranted assumption arises from misconceptions regarding the nature of protein epitopes and from the belief that it is justified to extrapolate from the antigenicity to the immunogenicity of proteins. Although the structure of the major HIV-1 antigenic sites has been elucidated, this knowledge has been of little use for designing an HIV-1 vaccine. Little attention has been given to the fact that protective immune responses tend to be polyclonal and involve antibodies directed to several different epitopes. It is concluded that only trial and error, empirical investigations using numerous immunization protocols may eventually allow us to identify which mixtures of immunogens are likely to be the best candidates for an HIV-1 vaccine.  相似文献   

15.
HIV-1 infection induces the expression of high level of GM2 ganglioside on infected cells and IgM antibody (Ab) against GM2 can cause complement (C)-mediated cytolysis of HIV-1-infected cells. Since GM2 is immunogenic in human, we proposed that an anti-GM2 IgM Ab may be produced by some HIV-1-infected patients and the titer of this Ab might provide some insight into the progress of the disease. On this premise, the amount of IgM Ab against GM2 was determined in 124 HIV-1-infected patients and 111 seronegative donors. As expected, the anti-GM2 IgM Ab titers of the patients was significantly higher than that of the seronegative donors while the total IgM levels remained unchanged. In addition, we determined the CD4+ cell count and the HIV-RNA load in the HIV-1-infected patients. The results showed a positive correlation between the anti-GM2 IgM Ab titer and CD4+ cell count but a negative correlation between the anti-GM2 IgM Ab titer and HIV-RNA load. These suggest that anti-GM2 IgM Ab induced and/or enhanced by HIV-1 infection causes C-mediated cytolysis of HIV-1-infected cells in vivo to a certain extent, and may help lower the plateau level of the HIV-RNA load. Therefore, the amount of IgM Ab against GM2 may be related to the prognosis of HIV-1 infected patients.  相似文献   

16.
The Fab' fragment of a monoclonal antibody (mAb) to CD3 and the F(ab')2 fragment of a mAb to human immunodeficiency virus 1 (HIV-1) gp41 were combined to generate a bifunctional antibody (BFA). The mAb to gp41 (IV1-4G6) has previously been shown to react with a number of HIV-1 strains and T-lymphoblastoid cells (TLBC) armed with the BFA (BFA-TLBC) effectively inhibited HIV-1 in primarily cultured lymphoblasts infected with the clinically isolated virus which was reactive to the mAb. Although BFA-TLBC could not cause cytolysis of 51Cr-labeled latently infected cells (OM-10.1) in 6 hr incubation, cocultivation of OM-10.1 cells with BFA-TLBC for 3 days or more eliminated the latently infected cells making the cells susceptible to BFA-TLBC. Therefore, BFA-TLBC may be beneficial for HIV-infected patients in eradicating latently infected cells which can not be eliminated even with highly active antiretroviral therapy (HAART).  相似文献   

17.
Antisense amino acids are amino acids which can be translated from the corresponding anti-codons of a sense amino acid. Antisense peptides encoded by the noncoding DNA strand have a tendency to interact with each other. We have demonstrated that antisense peptide sequences are present intramolecularly, and these may contribute to the folding and maintenance of the tertiary structure of a protein. T20 is a synthetic peptide with an amino acid sequence in the gp41 of HIV-1 and has been demonstrated to be a potent inhibitor of HIV-1 infection. We searched for intramolecular peptide sequences which are antisense to portions of T20. A synthetic peptide (TA-1L) consisting of amino acids 84 to 97 of gp160, which contains an antisense peptide sequence (TA-1) to T20, was shown to inhibit HIV-1(IIIB) infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. The TA-1L site, which exists in the C1 domain of gp160, is highly homologous among strains of HIV-1, especially at TA-1 and in the amino acids flanking the C terminus. Although the TA-1 sites of 18 out of 30 HIV-1 strains were antisense to the T20 region, those of the remaining 12 strains, including HIV-1(MN), were not. However, TA-1L inhibited infection by HIV-1(MN), which has no antisense peptide in T20 corresponding to TA-1, although the inhibitory effect was weaker. TA-1L may thus also interfere with the gp160 interaction with CD4, which has an antisense sequence to TA-1.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) protein U (VpU) is an accessory protein responsible for enhancement of viral particle release and down regulation of the T-lymphocyte coreceptor CD4. Direct binding between the cytoplasmic domains of CD4 and VpU as well as phosphorylation of serines 53 and 57 in the cytoplasmic domain of VpU plays a central role in CD4 downregulation. We investigated structural consequences of phosphorylation of the two serines using nuclear magnetic resonance spectroscopy. A uniformly 15N and 13C stable isotope-labeled 45-residue peptide comprising the cytoplasmic domain of VpU (VpUcyt) was recombinantly produced in E .coli. The peptide forms two helices (commonly referred to as helix 2 and 3) in the presence of membrane mimicking dodecylphosphocholine (DPC) micelles, which flank a flexible region containing the two phosphorylation sites. Phosphorylation does not cause any drastic structural changes in the secondary structure of VpUcyt. However, an N-terminal elongation of helix 3 and a slightly reduced helicity at the C-terminus of helix 2 are observed upon phosphorylation based on characteristic changes of 13Calpha and 13Cbeta chemical shifts. Phosphorylation also reduces the local mobility of the protein backbone in the loop region containing the phosphorylation sites according to heteronuclear 1H--15N nuclear Overhauser enhancement (NOE) data.  相似文献   

19.
HIV-1 enters cells through interacting with cell surface molecules such as CD4 and chemokine receptors. We generated recombinant soluble gp120s derived from T-cell line-tropic (T-tropic) and macrophage-tropic (M-tropic) HIV-1 strains using a baculovirus expression system and investigated the association of CD4-gp120 complex with the chemokine receptor and/or other surface molecule(s). For monitoring the co-down-modulations of the CD4-gp120 complex, a cytoplasmic domain deletion mutant (tailless CD4), which is not capable of undergoing down-modulation by itself in response to phorbol ester PMA, was used. Our studies revealed both cell-type and HIV-1 strain-specific differences. We found that T-tropic gp120s were capable of priming co-down-modulation with tailless CD4 by interacting with CXCR4, whereas M-tropic SF162 gp120 could not after PMA treatment even in the presence of CCR5. Among the T-tropic HIV-1 envelopes, IIIB gp120 was the most potent. Furthermore, the ability of gp120 to prime the PMA induced co-down-modulation of tailless CD4 appeared to be dependent on the concentration of the principal coreceptor CXCR4. Nevertheless, the observation that IIIB gp120 strongly primed tailless CD4 co-down-modulation on human osteosarcoma HOS cells that express undetectable levels of surface CXCR4 raised the possibility that membrane component(s) other than those recently identified can be involved in down-modulation of the CD4/gp120 complexes.  相似文献   

20.
The molecular mechanisms underlying the exit from the endoplasmic reticulum (ER) for cell surface trafficking of the human calcium receptor (hCaR) remain poorly understood. We investigated the role of the Sar1 small GTP-binding protein in cell surface transport of the hCaR. Disruptions of endogenous Sar1 function with the constitutively active Sar1H79G mutant or depletion using small interfering RNA, attenuates cell surface expression of the hCaR. Mutation of several putative di-acidic ER export motifs in the carboxyl-tail of the receptor revealed no apparent defect in cell surface expression. Truncated mutants lacking most of the carboxyl-terminal sequences or all intracellular domains also showed no impairment in cell surface expression at steady state. A truncated receptor containing only the large amino-terminal extracellular ligand-binding domain (ECD) is secreted into the culture medium and Sar1H79G inhibits this secretion. ECD receptor variants with the cysteines essential for intermolecular disulfide-linked dimerization mutated to serine or four of the asparagine sites for N-glycosylation mutated to alanine also disrupt secretion, indicating proper ECD conformation is critical for forward transport of this receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号