首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract: Five distinct ectomycorrhizal morphotypes were recognized on root systems of Fagus grandifolia collected in a maple-beech woodlot. Three morphotypes showed extensive root branching whereas two had limited root branching. One morphotype, a bright orange, smooth type, was studied in detail anatomically. A compact mantle with few emanating extraradical hyphae covered the root apex of each mycorrhizal lateral. A Hartig net extended around epidermal and hypodermal cells. Roots were mostly diarch and a single-layered endodermis and a biseriate hypodermis with the inner hypodermis having suberized walls were present in all specimens examined. The mantle, and to a lesser extent the Hartig net, stored lipids, polysaccharides and proteins.  相似文献   

3.
 Mycorrhiza ontogeny and details of Hartig net and mantle structure were compared in ectomycorrhizas synthesized in growth pouches between the broad host range fungus Paxillus involutus and the tree species European black alder (Alnus glutinosa) and red pine (Pinus resinosa). In Alnus glutinosa, a paraepidermal Hartig net was restricted to the proximal (basal) portion of first-order laterals; the hypodermal layer appeared to be a barrier to fungal penetration. Phi-thickenings were present in some cortical cells but these were not related to lack of fungal ingress into the cortex. The mantle was often present close to the root apex but in many roots it was loosely organized and patchy. In several instances, the mantle formed around the root apex was only temporary; renewed root growth occurred without the formation of a mantle. In Pinus resinosa, the Hartig net developed between cortical cell layers of monopodial and dichotomously branched first–order laterals. Fungal hyphae in the Hartig net exhibited a complex labyrinthine mode of growth. The mantle had a pseudoparenchymatous structure and covered the root, including apices of dichotomously branched roots. The Paxillus–Pinus resinosa interaction had all the characteristics of a compatible ectomycorrhizal association. The Paxillus–Alnus glutinosa interaction, however, showed only aspects of superficial ectomycorrhizas, including the presence of a minimal (sometimes absent) and mostly proximal Hartig net and variable mantle development. Sclerotia were produced in the extraradical mycelium of Paxillus involutus when associated with either Alnus glutinosa or Pinus resinosa. Accepted: 22 October 1998  相似文献   

4.
Bücking H  Heyser W 《Mycorrhiza》2003,13(2):59-68
Energy-dispersive X-ray microanalytical investigations and microautoradiographic studies were carried out to examine whether the uptake and transfer of phosphate (P) by an ectomycorrhizal fungus is affected by the carbohydrate supply of its host plant. For this purpose, non-mycorrhizal seedlings of Pinus sylvestris L. and plants inoculated with the ectomycorrhizal basidiomycete Suillus bovinus (L. ex Fr.) Kuntze were placed in the dark for 7 days in advance of a P supply. The subcellular element distribution and the uptake and distribution of (33)P was analyzed in non-mycorrhizal and mycorrhizal roots of these plants and compared with plants kept constantly under normal light conditions (control plants). The results show that placing non-mycorrhizal plants in the dark in advance of the nutrient supply led to (1) a reduction of the subcellular contents of P, S and K, but to an increase in the cytoplasmic Na content, and (2) an increase of (33)P absorption and translocation to the shoot. It can be assumed that this increased inflow of (33)P in non-mycorrhizal plants was due to P starvation after suppressed photosynthesis and reduced respiration of these plants. The suppression of photosynthesis by an ectomycorrhizal host plant and the resulting lower carbohydrate supply conditions for the ectomycorrhizal fungus led to (1) a decrease of P absorption by the mycobiont, (2) a change of the P allocation in the fungal cell compartments of an ectomycorrhizal root, and (3) a reduction of P transfer to the host plant. However, microautoradiographic studies revealed that, under these conditions, P was also absorbed by the mycorrhizal fungus and translocated via the Hartig net to the host plant. In mycorrhizal roots of plants placed in the dark in advance of the nutrient supply, the cytoplasmic P content of the Hartig net was reduced and, instead, a high number of polyphosphate granules could be detected within the hyphae. The results indicate that the exchange processes between the symbionts in a mycorrhiza are possibly linked and that P uptake and translocation by an ectomycorrhizal fungus is also regulated by the carbohydrate supply of its host plant.  相似文献   

5.
Hartig net structure and ontogeny were compared in ectomycorrhizae synthesized between the broad host range fungus, Laccaria bicolor and two hosts, Betula alleghaniensis and Pinus resinosa. In B. alleghaniensis, the Hartig net was present in the epidermis of the three ectomycorrhizal types formed, fast-growing first-order laterals with proximal colonization, clavate second-order laterals, and nonclavate second-order laterals. Root hair-fungus interactions occurred in this association. In P. resinosa, the Hartig net developed in epidermal and cortical cell layers of monopodial and dichotomously branched first-order laterals. Short monopodial laterals exhibited a mantle only. Fungal hyphae in the Hartig net exhibited a complex labyrinthine mode of growth in ectomycorrhizae of both tree species.  相似文献   

6.
对菌根共生机制的研究是对其进行应用的前提,到目前为止,绝大多数外生菌根(ectomycorrhiza,ECM)的建立过程尚不明晰,在一定程度上限制了这些ECM真菌在林业中的应用。本研究以我国南方地区主栽树种之一——马尾松Pinus massoniana和其林下优势ECM真菌——粘盖乳牛肝菌Suillus bovinus为材料,在无菌条件下研究两者菌根共生体形成过程的形态学特征。结果表明马尾松与粘盖乳牛肝菌的共生过程分为2个阶段:(1)预共生阶段,即物理接触之前,粘盖乳牛肝菌可通过释放挥发物和分泌物促进马尾松根系伸长和分枝;(2)共生阶段,又可分为3个时期。接种后第4天,粘盖乳牛肝菌菌丝体开始与马尾松根系接触并形成附着胞进入接触期;第7天菌丝开始侵入根系内部,侵入期开始;第28天菌套和哈氏网形成,即菌套和哈氏网形成期,该时期菌根化根尖开始膨大,随后继续发育至二叉分枝状菌根形成。在发育顺序方面,哈氏网与菌套同步发育,但哈氏网成形早于菌套。以上结果可对后续ECM共生机制的深入研究及马尾松高效菌根化育苗技术的开发提供参考。  相似文献   

7.
Ectomycorrhizas were synthesized in pots and growth pouches betweenQuercus serrata, Q. acutissima, and two ectomycorrhizal fungi,Pisolithus tinctorius andHebeloma cylindrosporum. Root morphology and the structure of the mantle and Hartig net were compared using light, fluorescence, scanning and transmission electron microscopy.P. tinctorius initially colonized root cap cells, and eventually produced a highly branched lateral root system with a complete mantle, whereasH. cylindrosporum promoted root elongation with few hyphae on the root apex surface indicating that interaction between roots differs with fungal species. Hartig net structure and hyphal inclusions varied between all the combinations tested. There were structural differences between mycorrhizas ofH. cylindrosporum/Q. acutissima grown in soil and growth pouches, which indicate that the growth pouch environment can induce artefacts in roots. Fruit bodies ofH. cylindrosporum developed in pots withQ. acutissima. AlthoughP. tinctorius has been used to inoculate oak seedlings in the nursery, results of this study indicate thatH. cylindrosporum may also be an effective ectomycorrhizal fungus forQ. serrata andQ. acutissima.  相似文献   

8.
An in vitro system was used for ectomycorrhizal synthesis of Cenococcum geophilum Fr. with Cathaya argyrophylla Chun et Kuang, an endangered species. Calli initiated from stem segments and adventitious roots differentiated from young seedlings were removed and cocultured with Cenococcum geophilum on a modified Murashige-Skoog medium. Fungal hyphae were visible within intercellular spaces of the callus 4 weeks after inoculation, but definite and well-developed Hartig net structures did not form in the calli 8 weeks after inoculation. The typical ectomycorrhizal structures (i.e. hyphal mantle and intracortical Hartig net) were observed in root segments 8 weeks after inoculation. This is the first report of aseptic ectomycorrhizal-like formation/infection between root organ/callus of Cathaya argyrophylla and the ectomycorrhizal fungus Cenococcum geophilum. This culture system is useful for further investigation of mycorrhizal synthesis in Cathaya trees.(Author for correspondence. Tel: +86 (0)451 8219 1783; Fax: +86 (0)451 8219 1795; E-mail: lumin-fu@163.com)  相似文献   

9.
Siemens JA  Zwiazek JJ 《Mycorrhiza》2008,18(8):393-401
The effects of an E-strain fungus (Wilcoxina mikolae var. mikolae) and an ectomycorrhizal fungus (Hebeloma crustuliniforme) on growth and water relations of balsam poplar were examined and compared in the present study. Balsam poplar roots inoculated with W. mikolae var. mikolae (Wm) exhibited structures consistent with ectendomycorrhizal (EEM) associations, including a mantle surrounding the outside of the root and an extensive Hartig net that was located between cortical cells and extended to the vascular cylinder. Roots colonized with H. crustuliniforme (Hc) developed a mantle layer, indicative of an ectomycorrhizal (ECM) association, around the outer part of the root, but no distinct Hartig net was present. Wm-colonized balsam poplar also showed increased shoot growth, stomatal conductance (g s), and root volumes compared with non-inoculated and Hc-inoculated plants. However, Hc-inoculated plants had higher root hydraulic conductivity (L pr) compared with non-inoculated plants and Wm-inoculated plants. These results suggest that L pr was not a growth-limiting factor in balsam poplar and that hyphal penetration of the root cortex in itself may have little influence on root hydraulic properties.  相似文献   

10.
An in vitro system was used for ectomycorrhizal synthesis of Cenococcum geophilum Fr. with Cathaya argyrophylla Chun et Kuang, an endangered species. Calli initiated from stem segments and adventitious roots differentiated from young seedlings were removed and cocultured with Cenococcum geophllum on a modified Murashlge-Skoog medium. Fungal hyphae were visible within intercellular spaces of the callus 4 weeks after inoculation, but definite and well-developed Hartig net structures did not form in the calU 8 weeks after inoculation. The typical ectomycorrhizal structures (i.e. hyphal mantle and Intracortical Hartig net) were observed in root segments 8 weeks after inoculation. This is the first report of aseptic ectomycorrhlzal-like formation/infection between root organ/callus of Cathaya argyrophylla and the ectomycorrhizal fungus Cenococcum geophflum. This culture system is useful for further investigation of mycorrhizal synthesis in Cathaya trees.  相似文献   

11.
12.
The formation of ectomycorrhizal (ECM) root tissue is characterized by distinct morphological and developmental stages, such as preinfection and adhesion, mantle, and Hartig net formation. The global pattern of gene expression during these stages in the birch (Betula pendula)-Paxillus involutus ECM association was analyzed using cDNA microarrays. In comparison with nonsymbiotic conditions, 251 fungal (from a total of 1,075) and 138 plant (1,074 in total) genes were found to be differentially regulated during the ECM development. For instance, during mantle and Hartig net development, there were several plant genes upregulated that are normally involved in defense responses during pathogenic fungal challenges. These responses were, at later stages of ECM development, found to be repressed. Other birch genes that showed differential regulation involved several homologs that usually are implicated in water permeability (aquaporins) and water stress tolerance (dehydrins). Among fungal genes differentially upregulated during stages of mantle and Hartig net formation were homologs putatively involved in mitochondrial respiration. In fully developed ECM tissue, there was an upregulation of fungal genes related to protein synthesis and the cytoskeleton assembly machinery. This study highlights complex molecular interactions between two symbionts during the development of an ECM association.  相似文献   

13.
This work was carried out to determine the relative importance of the endomycorrhizal and (or) ectomycorrhizal association in species of Casuarina and Allocasuarina. Under axenic conditions, Pisolithus and Scleroderma isolates formed ectomycorrhizas with a mantle and a Hartig net on Allocasuarina verticillata but failed to form a Hartig net on Casuarina glauca. In a controlled soil system, C. glauca was inoculated with the endomycorrhizal fungus Glomus intraradices Schenck & Smith, and A. verticillata was inoculated with Pisolithus albus IR100 Bougher & Smith and (or) G. intraradices. Both symbionts significantly stimulated growth in both plant species. For A. verticillata, its growth response to ectomycorrhizal inoculation was higher than to endomycorrhizal inoculation. When both symbionts were inoculated, antagonism among the fungal isolates was observed with a higher ectomycorrhizal colonization. These results showed that A. verticillata was ectomycorrhizal dependent, whereas C. glauca was endomycorrhizal dependent. From a practical point of view, this study shows the importance of selecting compatible mycorrhizal fungi for developing successful inoculation programmes. In addition, it would help to further research and determine the effect of ecto- and endo-mycorrhizal symbiosis on the formation and function of N2-fixing actinorhizal nodules.  相似文献   

14.
Belowground biological interactions that occur among plant roots, microorganisms and animals are dynamic and substantially influence ecosystem processes. Among these interactions, the ectomycorrhizal (ECM) symbiosis is remarkable but unfortunately these associations have mainly been considered within the rather narrow perspective of their effects on the uptake of dissolved mineral nutrients by individual plants. More recent research has placed emphasis on a wider, multifunctional perspective, including the effects of ectomycorrhizal symbiosis on plant and microbial communities, and on ecosystem processes. This includes mobilization of N and P from organic polymers, release of nutrients from mineral particles or rock surfaces via weathering, effects on carbon cycling, interactions with mycoheterotrophic plants, mediation of plant responses to stress factors such as drought, soil acidification, toxic metals, and plant pathogens, rehabilitation and regeneration of degraded forest ecosystems, as well as a range of possible interactions with groups of other soil microorganisms. Ectomycorrhizas are almost invariably characterized by a Hartig net composed of highly branched hyphae which entirely surround the outer root cortical cells. The Hartig net is the place of massive bidirectional exchanges of nutrients between the host and the fungus. Through these branched hyphae ectomycorrhizal fungi connect their plant hosts to the heterogeneously distributed nutrients required for their growth, enabling the flow of energy-rich compounds required for nutrient mobilization whilst simultaneously providing conduits for the translocation of mobilized products back to their hosts. In addition to increasing the nutrient absorptive surface area of their host plant root systems, the extraradical mycelium of ectomycorrhizal fungi provides a direct pathway for translocation of photosynthetically derived carbon from their hosts to microsites in the soil and a large surface area for interaction with other soil micro-organisms. The detailed functioning and regulation of these mycorrhizosphere processes is still poorly understood and needs detailed molecular approach to study these mycorrhizosphere processes but recent progress in ectomycorrhizal associations is reviewed and potential benefits of improved understanding of mycorrhizosphere interactions are discussed.  相似文献   

15.
16.
The ectomycorrhizal fungus Pisolithus tinctorius interacts with roots of Picea mariana to form a typical mantle and Hartig net. Hyphae alter their growth pattern when in contact with susceptible root hairs in the mycorrhizal infection zone and grow acropetally, gradually covering the length of the hair to form a mantlelike structure. Initial contact with the hair may be influenced by a fibrillar material on the root hair surface. Although many root hairs become surrounded by fungal hyphae, they are not penetrated, and therefore are not entry points for this symbiotic fungus.  相似文献   

17.
Specific cell-cell and cell-substrate interactions direct the growth of ectomycorrhizal fungi to their host root targets. These elaborate mechanisms lead to the differentiation of distinct multihyphal structures, the mantle, and the Hartig net. In the ectomycorrhizal basidiomycete Pisolithus tinctorius, the use of two-dimensional gel electrophoresis, immunocytochemical microscopy, and RNA blot analysis has demonstrated the differential expression of cell wall proteins (CWPs), such as hydrophobins, adhesins, and mannoproteins, during symbiotic interaction. In other fungi, these CWPs have been suggested to play a role in hyphae aggregation, intracellular signaling cascades, and cytoskeletal changes. The recent cloning of the genes for several of these CWPs in P. tinctorius allows us to address their function in symbiosis. This review summarizes our knowledge of CWPs in P. tinctorius and considers parallels with other biotrophic fungi as a possible framework for future work.  相似文献   

18.
Roots of clonal birches ( Betula pendula ) were inoculated with the ectomycorrhizal fungi Paxillus involutus (isolates P0 and Mi) and Hebeloma cylindrosporum (strains D1 and D105). These fungi showed different rates of mycorrhiza formation in vitro . Mature mycorrhizas were obtained after only 2–4 d with H. cylindrosporum , whereas 6–8 d were necessary with P. involutus isolate P0, and P. involutus isolate Mi was not able to form mature mycorrhiza during the 10 d of the experiment. Temporal changes in PAL activity and the expression of genes encoding intracellular pathogenesis-related proteins were followed after inoculating birch roots with these fungi. Transient increase of PAL activity, and transient induction of expression of the wound-inducible Bet v1-SC1 gene, were observed in roots challenged with both H. cylindrosporum strains and the P. involutus isolate P0. These changes were found to coincide with hyphal penetration between root cells during Hartig net formation, and were never observed in roots inoculated with the poorly aggressive P. involutus isolate Mi. Examination of mycorrhizal root sections under u.v. light indicated the presence of phenolic compounds in the host cell walls at the vicinity of the Hartig net. These results strongly suggest that hyphal penetration between the root cells triggers a transient defence response which, in turn, could limit Hartig net formation to the outer layer of the root cortex.  相似文献   

19.
20.
 Root systems of the herbaceous species Polygonum viviparum and Kobresia bellardii were excavated from an alpine site in the Rocky Mountains, Colorado, and processed for microscopic examination. Several ectomycorrhizal morphotypes were present on root systems of both species;K. bellardii often had complex clusters of mycorrhizal roots present. A mantle and Hartig net were present on all mycorrhizal root tips processed. The Hartig net was confined to the epidermis, and the parenchyma cells of this layer were radially elongated, vacuolated and contained densely staining inclusions. Intracellular hyphae and structures typical for vesicular-arbuscular mycorrhizas were never observed. Both herbaceous species, therefore, had ectomycorrhizal associations comparable to those described for woody angiosperm species. Accepted: 14 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号