首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subversion of plant cellular functions is essential for bacterial pathogens to proliferate in host plants and cause disease. Most bacterial plant pathogens employ a type III secretion system to inject type III effector (T3E) proteins inside plant cells, where they contribute to the pathogen‐induced alteration of plant physiology. In this work, we found that the Ralstonia solanacearum T3E RipAY suppresses plant immune responses triggered by bacterial elicitors and by the phytohormone salicylic acid. Further biochemical analysis indicated that RipAY associates in planta with thioredoxins from Nicotiana benthamiana and Arabidopsis. Interestingly, RipAY displays γ‐glutamyl cyclotransferase (GGCT) activity to degrade glutathione in plant cells, which is required for the reported suppression of immune responses. Given the importance of thioredoxins and glutathione as major redox regulators in eukaryotic cells, RipAY activity may constitute a novel and powerful virulence strategy employed by R. solanacearum to suppress immune responses and potentially alter general redox signalling in host cells.  相似文献   

2.
The soil‐borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1‐like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine‐rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease‐controlling T3E, and sheds light on the co‐evolutionary arms race between the bacterium and its hosts.  相似文献   

3.
4.
5.
6.
The ability of Ralstonia solanacearum strain GMI1000 to cause disease on a wide range of host plants (including most Solanaceae and Arabidopsis thaliana) depends on genes activated by the regulatory gene hrpB. HrpB controls the expression of the type III secretion system (TTSS) and pathogenicity effectors transiting through this pathway. In order to establish the complete repertoire of TTSS-dependent effectors belonging to the Hrp regulon and to start their functional analysis, we developed a rapid method for insertional mutagenesis, which was used to monitor the expression of 71 candidate genes and disrupt 56 of them. This analysis yielded a total of 48 novel hrpB-regulated genes. Using the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter fusion system, we provide direct biochemical evidence that five R. solanacearum effector proteins are translocated into plant host cells through the TTSS. Among these novel TTSS effectors, RipA and RipG both belong to multigenic families, RipG defining a novel class of leucine-rich-repeats harbouring proteins. The members of these multigenic families are differentially regulated, being composed of genes expressed in either an hrpB-dependent or an hrpB-independent manner. Pathogenicity assays of the 56 mutant strains on two host plants indicate that, with two exceptions, mutations in individual effectors have no effect on virulence, a probable consequence of genetic and functional redundancy. This large repertoire of HrpB-regulated genes, which comprises > 20 probable TTSS effector genes with no counterparts in other bacterial species, represents an important step towards a full-genome understanding of R. solanacearum virulence.  相似文献   

7.
8.
Ralstonia solanacearum is a Gram‐negative soil‐borne bacterium that causes bacterial wilt disease in more than 200 plant species, including economically important Solanaceae species. In R. solanacearum, the hypersensitive response and pathogenicity (Hrp) type III secretion system is required for both the ability to induce the hypersensitive response (HR) in nonhost plants and pathogenicity in host plants. Recently, 72 effector genes, called rip (Ralstonia protein injected into plant cells), have been identified in R. solanacearum RS1000. RS1002, a spontaneous nalixidic acid‐resistant derivative of RS1000, induced strong HR in the nonhost wild eggplant Solanum torvum in an Hrp‐dependent manner. An Agrobacterium‐mediated transient expression system revealed that Rip36, a putative Zn‐dependent protease effector of R. solanacearum, induced HR in S. torvum. A mutation in the putative Zn‐binding motif (E149A) completely abolished the ability to induce HR. In agreement with this result, the RS1002‐derived Δrip36 and rip36E149A mutants lost the ability to induce HR in S. torvum. An E149A mutation had no effect on the translocation of Rip36 into plant cells. These results indicate that Rip36 is an avirulent factor that induces HR in S. torvum and that a putative Zn‐dependent protease motif is essential for this activity.  相似文献   

9.
10.
11.
12.
Ralstonia solanacearum is a widespread and destructive plant pathogen. We present the genome of the type strain, K60 (phylotype IIA, sequevar 7). Sequevar 7 strains cause ongoing tomato bacterial wilt outbreaks in the southeastern United States. K60 generally resembles R. solanacearum CFBP2957, a Caribbean tomato isolate, but has almost 360 unique genes.  相似文献   

13.
14.
We present here the characterization of a new gene family, awr, found in all sequenced Ralstonia solanacearum strains and in other bacterial pathogens. We demonstrate that the five paralogues in strain GMI1000 encode type III-secreted effectors and that deletion of all awr genes severely impairs its capacity to multiply in natural host plants. Complementation studies show that the AWR (alanine-tryptophan-arginine tryad) effectors display some functional redundancy, although AWR2 is the major contributor to virulence. In contrast, the strain devoid of all awr genes (Δawr1-5) exhibits enhanced pathogenicity on Arabidopsis plants. A gain-of-function approach expressing AWR in Pseudomonas syringae pv. tomato DC3000 proves that this is likely due to effector recognition, because AWR5 and AWR4 restrict growth of this bacterium in Arabidopsis. Transient overexpression of AWR in nonhost tobacco species caused macroscopic cell death to varying extents, which, in the case of AWR5, shows characteristics of a typical hypersensitive response. Our work demonstrates that AWR, which show no similarity to any protein with known function, can specify either virulence or avirulence in the interaction of R. solanacearum with its plant hosts.  相似文献   

15.
摘要:【目的】研究青枯菌Rsc1285参与调控其III型分泌系统(Type III secretion system,T3SS)及致病力的途径。【方法】通过基因敲除、基因互补等研究Rsc1285对T3SS基因表达和致病力的影响。【结果】青枯菌rsc1285基因缺失突变体对寄主西红柿植株的致病力明显减弱,其hrpB、T3SS等基因表达水平较野生型明显降低,但hrpG、prhG的表达不受影响。【结论】青枯菌通过一个全新的途径利用Rsc1285调控hrpB及T3SS的转录表达并决定其致病力。  相似文献   

16.
17.
18.
The type III secretion systems (T3SS) and secreted effectors (T3SEs) are essential virulence factors in Gram‐negative bacteria. During the arms race, plants have evolved resistance (R) genes to detect specific T3SEs and activate defence responses. However, this immunity can be efficiently defeated by the pathogens through effector evolution. HopZ1 of the plant pathogen Pseudomonas syringae is a member of the widely distributed YopJ T3SE family. Three alleles are known to be present in P. syringae, with HopZ1a most resembling the ancestral allelic form. In this study, molecular mechanisms underlying the sequence diversification‐enabled HopZ1 allelic specificity is investigated. Using domain shuffling experiments, we present evidence showing that a central domain upstream of the conserved catalytic cysteine residue determines HopZ1 recognition specificity. Random and targeted mutagenesis identified three amino acids involved in HopZ1 allelic specificity. Particularly, the exchange of cysteine141 in HopZ1a with lysine137 at the corresponding position in HopZ1b abolished HopZ1a recognition in soybean. This position is under strong positive selection, suggesting that the cysteine/lysine mutation might be a key step driving the evolution of HopZ1. Our data support a model in which sequence diversification imposed by the plant R gene‐associated immunity has driven HopZ1 evolution by allowing allele‐specific substrate‐binding.  相似文献   

19.
Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects approximately 70 effector proteins into plant cells via the Hrp type III secretion system in an early stage of infection. To identify an as-yet-unidentified avirulence factor possessed by the Japanese tobacco-avirulent strain RS1000, we transiently expressed RS1000 effectors in Nicotiana benthamiana leaves and monitored their ability to induce effector-triggered immunity (ETI). The expression of RipB strongly induced the production of reactive oxygen species and the expressions of defence-related genes in N. benthamiana. The ripB mutant of RS1002, a nalixidic acid-resistant derivative of RS1000, caused wilting symptoms in N. benthamiana. A pathogenicity test using R. solanacearum mutants revealed that the two already known avirulence factors RipP1 and RipAA contribute in part to the avirulence of RS1002 in N. benthamiana. The Japanese tobacco-virulent strain BK1002 contains mutations in ripB and expresses a C-terminal-truncated RipB that lost the ability to induce ETI in N. benthamiana, indicating a fine-tuning of the pathogen effector repertoire to evade plant recognition. RipB shares homology with Xanthomonas XopQ, which is recognized by the resistance protein Roq1. The RipB-induced resistance against R. solanacearum was abolished in Roq1-silenced plants. These findings indicate that RipB acts as a major avirulence factor in N. benthamiana and that Roq1 is involved in the recognition of RipB.  相似文献   

20.
Banana vascular wilt or Moko is a disease caused by Ralstonia solanacearum. This study aimed to sequence, assemble, annotate, and compare the genomes of R. solanacearum Moko ecotypes of different sequevar strains from Brazil. Average nucleotide identity analyses demonstrated a high correlation (> 96%) between the genome sequences of strains CCRMRs277 (sequevar IIA-24), CCRMRs287 (IIB-4), CCRMRs304 (IIA-24), and CCRMRsB7 (IIB-25), which were grouped into phylotypes IIA and IIB. The number of coding sequences present in chromosomes and megaplasmids varied from 3,070 to 3,521 and 1,669 to 1,750, respectively. Pangenome analysis identified 3,378 clusters in the chromosomes, of which 2,604 were shared by all four analyzed genomes and 2,580 were single copies. In megaplasmids, 1,834 clusters were identified, of which 1,005 were shared by all four genomes and 992 were identified as single copies. Strains CCRMRsB7 and CCRMRs287 differed from the others by having unique clusters in both their chromosomes and megaplasmids, and CCRMRsB7 possessed the largest genome among all Moko ecotype strains sequenced to date. Therefore, the genomic information obtained in this study provides a theoretical basis for the identification, characterization, and phylogenetic analysis of R. solanacearum Moko ecotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号