首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prior to hibernation, mammals accumulate large amounts of fat in their bodies. In temperate mammalian species, hibernation is improved by increasing the levels of poly-unsaturated fatty acids (PUFA) in the body. The saturation of fatty acids (FA) in both white adipose tissue (WAT) and membrane phospholipids of mammals often reflects their diet composition. We found that the greater mouse-tailed bat (Rhinopoma microphyllum) accumulates large amounts of fat at the end of summer by gradually shifting to a fat-rich diet (queen carpenter ants, Camponotus felah). PUFA are almost absent in this diet (<1 % of total FA), which contains a high fraction of saturated (SFA) and mono-unsaturated (MUFA) fatty acids. We found similar low levels of PUFA in mouse-tailed bat WAT, but not in their heart total lipids. The expression of two appetite-stimulating (orexigenic) hypothalamic neuropeptides, AgRP and NPY, increased in parallel to the shift in diet and with fat gain in these bats. To the best of our knowledge, this is the only documented example of specific pre-hibernation diet in bats, and one which reveals the most saturated FA composition ever documented in a mammal. We suggest that the increase in expression levels of NPY and AgRP may contribute to the observed diet shift and mass gain, and that the FA composition of the bat’s specialized diet is adaptive in the relatively high temperatures we recorded in both their winter and summer roosts.  相似文献   

2.
It has been suggested that nutritional manipulations during the first weeks of life can alter the development of the hypothalamic circuits involved in energy homeostasis. We studied the expression of a large number of the hypothalamic neuropeptide mRNAs that control body weight in mice that were overfed during breastfeeding (mice grown in a small litter, SL) and/or during adolescence (adolescent mice fed a high-fat diet, AHF). We also investigated possible alterations in mRNA levels after 50 days of a high-fat diet (high-fat challenge, CHF) at 19 weeks of age. Both SL and AHF conditions caused overweight during the period of developmental overfeeding. During adulthood, all of the mouse groups fed a CHF significantly gained weight in comparison with mice fed a low-fat diet, but the mice that had undergone both breast and adolescent overfeeding (SL-AHF-CHF mice) gained significantly more weight than the control CHF mice. Of the ten neuropeptide mRNAs studied, only neuropeptide Y (NPY) expression was decreased in all of the groups of developmentally overfed adult mice, but CHF during adulthood by itself induced a decrease in NPY, agouti-related protein (AgRP) and orexin (Orx) mRNA levels. Moreover, in the developmentally overfed CHF mice NPY, AgRP, galanin (GAL) and galanin-like peptide (GalP) mRNA levels significantly decreased in comparison with the control CHF mice. These results show that, during adulthood, hypothalamic neuropeptide systems are altered (NPY) and/or abnormally respond to a high-fat diet (NPY, AgRP, GAL and GalP) in mice overfed during critical developmental periods.  相似文献   

3.
4.
To understand the function of the feeding-stimulatory peptide, galanin (GAL), in eating and body weight regulation, the present experiments tested the effects of both acute and chronic injections of this peptide into the paraventricular nucleus (PVN) of rats. With food absent during the test, acute injection of GAL (300 pmol/0.3 microl) significantly increased phosphofructokinase activity in muscle, suggesting enhanced capacity to metabolize carbohydrate, and reduced circulating glucose levels. It also decreased beta-hydroxyacyl-CoA dehydrogenase activity in muscle, indicating reduced fat oxidation, while increasing circulating non-esterified fatty acids (NEFA) and lipoprotein lipase activity in adipose tissue (aLPL). Chronic PVN injections of GAL (300 pmol/0.3 microl/injection) versus saline over 7-10 days significantly stimulated daily caloric intake and increased the weight of four dissected fat depots by 30-40%. These effects, accompanied by elevated levels of leptin, triglycerides, NEFA and aLPL activity, were evident only in rats on a diet with at least 35% fat. Thus, by favoring carbohydrate over fat metabolism in muscle and reversing hyperglycemia, PVN GAL may have a function in counteracting the metabolic disturbances induced by a high-fat diet. As a consequence of these actions, GAL can promote the partitioning of lipids away from oxidation in muscle towards storage in adipose tissue.  相似文献   

5.
Some, but not all, fats are obesogenic. The aim of the present studies was to investigate the effects of changing type and amount of dietary fats on energy balance, fat deposition, leptin, and leptin-related neural peptides: leptin receptor, neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC), in C57Bl/6J mice. One week of feeding with a highly saturated fat diet resulted in ~50 and 20% reduction in hypothalamic arcuate NPY and AgRP mRNA levels, respectively, compared with a low-fat or an n-3 or n-6 polyunsaturated high-fat (PUFA) diet without change in energy intake, fat mass, plasma leptin levels, and leptin receptor or POMC mRNA. Similar neuropeptide results were seen at 7 wk, but by then epididymal fat mass and plasma leptin levels were significantly elevated in the saturated fat group compared with low-fat controls. In contrast, fat and leptin levels were reduced in the n-3 PUFA group compared with all other groups. At 7 wk, changing the saturated fat group to n-3 PUFA for 4 wk completely reversed the hyperleptinemia and increased adiposity and neuropeptide changes induced by saturated fat. Changing to a low-fat diet was much less effective. In summary, a highly saturated fat diet induces obesity without hyperphagia. A regulatory reduction in NPY and AgRP mRNA levels is unable to effectively counteract this obesogenic drive. Equally high fat diets emphasizing PUFAs may even protect against obesity.  相似文献   

6.
Maternal consumption of a fat-rich diet during pregnancy, which causes later overeating and weight gain in offspring, has been shown to stimulate neurogenesis and increase hypothalamic expression of orexigenic neuropeptides in these postnatal offspring. The studies here, using an in vitro model that mimics in vivo characteristics after prenatal high-fat diet (HFD) exposure, investigate whether these same peptide changes occur in embryos and if they are specific to neurons. Isolated hypothalamic neurons were compared with whole hypothalamus from embryonic day 19 (E19) embryos that were prenatally exposed to HFD and were both found to show similar increases in mRNA expression of enkephalin (ENK) and neuropeptide Y (NPY) compared with that of chow-exposed embryos, with no change in melanin-concentrating hormone, orexin, or galanin. Further examination using immunofluorescence cytochemistry revealed an increase in the number of cells expressing ENK and NPY. By plotting the fluorescence intensity of each cell as a probability density function, three different populations of neurons with low, medium, or high levels of ENK or NPY were found in both HFD and chow groups. The prenatal HFD shifted the density of neurons from the population containing low peptide levels to the population containing high peptide levels. This study indicates that neuronal culture is a useful in vitro system for studying diet effects on neuronal development and shows that prenatal HFD exposure alters the population of hypothalamic neurons containing ENK and NPY in the embryo. These changes may contribute to the increase in HFD intake and body weight observed in offspring.  相似文献   

7.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.  相似文献   

8.
The larvae of Spodoptera litura were reared on an artificial diet, and the flight capability, and triacylglycerol (TG) level plus its fatty acid composition in 3-day-old sexually mature and non-fed adults were compared. In males, during 3 hr of tethered flight, the levels of abdominal TG and its fatty acid components did not change. But thereafter the TG and fatty acids, significantly unsaturated fatty acids in TG declined in their levels with the prolongation of flight, unsaturated fatty acids being exhausted preceding saturated fatty acid decline. When males were tested by tethered flight for 20 hr, some could fly for nearly the whole period, and were judged to be able to fly for approximately 24 hr, depending on the level of residual TG. Fatty aids in TG decreased in females similarly to males during tethered flight and some females with fully developed ovaries deposited eggs after 12 hr of flight similarly to non-flown individuals, which supports the long-distance flight capability even in sexually mature females. These results are discussed with regard to the overseas migration of this moth.  相似文献   

9.
Exposure to high-fat diets for prolonged periods results in positive energy balance and obesity, but little is known about the initial physiological and neuroendocrine response of obesity-susceptible strains to high-fat feeding. To assess responses of C57BL/6J mice to high- and low-fat diets, we quantitated the hypothalamic expression of neuropeptides implicated in weight regulation and neuroendocrine function over a 2-wk period. Exposure to high-fat diet increased food consumption over a 2-day period during which leptin levels were increased when assessed by a frequent sampling protocol [area under the curve (AUC): 134.6 +/- 10.3 vs. 100 +/- 12.3, P = 0.03 during first day and 126.5 +/- 8.2 vs. 100 +/- 5.2, P = 0.02 during second day]. During this period, hypothalamic expression of neuropeptide Y (NPY) and agouti-related protein (AgRP) decreased by approximately 30 and 50%, respectively (P < 0.001). After 1 wk, both caloric intake and hypothalamic expression of NPY and AgRP returned toward baseline. After 2 wk, cumulative caloric intake was again higher in the high-fat group, and now proopiomelanocortin (POMC) was elevated by 76% (P = 0.01). This study demonstrates that high-fat feeding induces hyperphagia, hyperleptinemia, and transient suppression of orexigenic neuropeptides during the first 2 days of diet. The subsequent induction of POMC may be a second defense against obesity. Attempts to understand the hypothalamic response to high-fat feeding must examine the changes as they develop over time.  相似文献   

10.
The opioid peptides enkephalin (ENK) and dynorphin (DYN), when injected into the hypothalamus, are known to stimulate feeding behavior and preferentially increase the ingestion of a high-fat diet. Studies of another peptide, galanin (GAL), with similar effects on feeding demonstrate that a high-fat diet, in turn, can stimulate the expression of this peptide in the hypothalamus. The present study tested different diets and variable periods of high- vs. low-fat diet consumption to determine whether the opioid peptides respond in a similar manner as GAL. In six experiments, the effects of dietary fat on ENK and DYN were examined in three hypothalamic areas: the paraventricular nucleus (PVN), perifornical hypothalamus (PFH), and arcuate nucleus (ARC). The results demonstrated that the ingestion of a high-fat diet increases gene expression and peptide levels of both ENK and DYN in the hypothalamus. The strongest and most consistent effect is seen in the PVN. In this nucleus, ENK and DYN are increased by 50-100% after 1 wk, 1 day, 60 min, and even 15 min of high-fat diet consumption. While showing some effect in the PFH, these peptides in the ARC are considerably less responsive, exhibiting no change in response to the briefer periods of diet intake. This effect of dietary fat on PVN opioids can be observed with diets equal in caloric density and palatability and without a change in caloric intake, body weight, fat pad weight, or levels of insulin or leptin. The data reveal a strong and consistent association between these peptides and a rise in circulating levels of triglycerides, supporting a role for these lipids in the fat-induced stimulation of opioid peptides in the PVN, similar to GAL.  相似文献   

11.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

12.
13.
In rodents, the mediobasal hypothalamus and the hypothalamic paraventricular nucleus (PVN) are implicated in leptin signaling. Surprisingly little data is available on the human hypothalamus. We set out to study the expression of suppressor-of-cytokine-signaling 3 (SOCS3), α-melanocyte stimulating hormone (αMSH) and agouti-related protein (AgRP) in the infundibular nucleus (IFN) and to investigate the relationship between these neuropeptide expressions and serum leptin concentrations in a blood sample taken within 24h before death. We studied post-mortem human brain material by means of quantitative immunocytochemistry. We found that SOCS3 immunoreactivity was widely distributed throughout the hypothalamus, and most prominent in the PVN, whereas expression levels in the IFN were low. Surprisingly, SOCS3 expression in the PVN was inversely related to serum leptin. A significant positive correlation was observed between AgRP and NPY expression in the IFN. The inverse correlation between SOCS3 expression in the PVN and serum leptin was unexpected and may be related to the hypothalamic adaptation to fatal illness rather than to nutritional status, or may represent an interspecies difference.  相似文献   

14.
Chance WT  Xiao C  Dayal R  Sheriff S 《Peptides》2007,28(2):295-301
Although previous studies have implicated NPY in the etiology of experimental cancer anorexia, the results have been difficult to interpret. Studies have suggested that although NPY level and message were decreased in the dorsomedial hypothalamic area (DMA), they were elevated in the ventromedial hypothalamic area (VMA). To better assess specific intra-area alterations of NPY, Y(1) receptor (Y(1) R), and agouti-related peptide (AgRP) in TB rats, we used radioimmunoassay, quantitative real-time RT-PCR, and immunohistochemistry. We found that NPY and AgRP mRNA were elevated significantly in whole hypothalamus of anorectic TB rats, while Y(1) R mRNA was decreased. Based on two replicates of four pooled samples each, both NPY and AgRP mRNA appeared to be elevated in the VMA of anorectic TB rats, while only AgRP exhibited a similar increase in the DMA. Levels of NPY were elevated in the VMA of both TB and pair-fed (PF) rats, but in the DMA only PF rats exhibited a significant NPY increase. NPY and Y(1) R immunohistochemistry revealed reduced NPY staining in PVN and ARC nucleus of TB and PF rats. Y(1) R immunostaining was also reduced in the ARC and PVN of TB rats, while PF rats exhibited elevated immunostaining in the PVN. These results continue to implicate dysfunction of NPY feeding systems in experimental cancer anorexia and suggest down-regulation of Y(1) R receptors as well as possible problems in NPY translation.  相似文献   

15.
Effects of PVN galanin on macronutrient selection   总被引:4,自引:0,他引:4  
The neuropeptide galanin (GAL), after injection into the hypothalamic paraventricular nucleus (PVN), elicited a potent feeding response. In satiated rats maintained on pure macronutrient diets (protein, carbohydrate and fat), PVN GAL injection was found to cause a preferential increase in the consumption of the fat diet, with a significantly smaller increase in carbohydrate intake and no change in protein ingestion. When the fat diet was removed, GAL's stimulatory effect on carbohydrate ingestion was reliably and selectively enhanced. These effects of GAL stand in contrast to those of neuropeptide Y (NPY), which is co-localized with NE in the PVN and which induced in these animals a strong and selective enhancement of carbohydrate intake after PVN injection. Similarly, PVN NE, known to act via alpha 2-noradrenergic receptors, induced feeding specifically of carbohydrate and, to a small extent, fat. These differential results demonstrate the specificity of the effects of the peptides (GAL and NPY) and NE on macronutrient selection, all of which can be repeatedly observed in the same group of animals and which appear to be unrelated to the rats' natural 24 hr baseline preferences. However, we did observe a strong positive correlation between NE- and GAL-induced carbohydrate intake. In light of this relationship and additional pharmacological evidence linking GAL- and NE-induced feeding, it is proposed that the effects of GAL on macronutrient selection may be mediated, at least in part, by the alpha 2-noradrenergic feeding system within the PVN.  相似文献   

16.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity. (Author correspondence: )  相似文献   

17.
18.
19.
Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipid intermediate ceramide. This study assessed cardiac function, expression of PPAR-regulated genes, and cardiomyocyte apoptosis in rats after 8 wk on either a low-fat diet [normal chow control (NC); 10% fat calories] or high-fat diets composed mainly of either saturated (Sat) or unsaturated fatty acids (Unsat) (60% fat calories) (n = 10/group). The Sat group had lower plasma insulin and leptin concentrations compared with the NC or Unsat groups. Cardiac function and mass and body mass were not different. Cardiac triglyceride content was increased in the Sat and Unsat groups compared with NC (P < 0.05); however, ceramide content was higher in the Sat group compared with the Unsat group (2.9 +/- 0.2 vs. 1.4 +/- 0.2 nmol/g; P < 0.05), whereas the NC group was intermediate (2.3 +/- 0.3 nmol/g). The number of apoptotic myocytes, assessed by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining, was higher in the Sat group compared with the Unsat group (0.28 +/- 0.05 vs. 0.17 +/- 0.04 apoptotic cells/1,000 nuclei; P < 0.04) and was positively correlated to ceramide content (P < 0.02). Both high-fat diets increased the myocardial mRNA expression of the PPAR-regulated genes encoding uncoupling protein-3 and pyruvate dehydrogenase kinase-4, but only the Sat diet upregulated medium-chain acyl-CoA dehydrogenase. In conclusion, dietary fatty acid composition affects cardiac ceramide accumulation, cardiomyocyte apoptosis, and expression of PPAR-regulated genes independent of cardiac mass or function.  相似文献   

20.
Agouti-related peptide (AgRP) is a receptor antagonist of central nervous system (CNS) melanocortin receptors and appears to have an important role in the control of food intake since exogenous CNS administration in rats and overexpression in mice result in profound hyperphagia and weight gain. Given that AgRP is heavily colocalized with neuropeptide Y (NPY) and that orexigenic effects of NPY depend on activity at opioid receptors, we hypothesized that AgRP's food-intake effects are also mediated by opioid receptors. Subthreshold doses of the opioid receptor antagonist naloxone blocked AgRP-induced intake when given simultaneously but not 24 h after AgRP injection. Opioids not only influence food intake but food selection as well. Hence, we tested AgRP's effect to alter food choice between matched diets with differing dietary fat content. AgRP selectively enhanced intake of the high-fat but not the low-fat diet. Additionally, AgRP selectively increased chow intake in rats given ad libitum access to a 20% sucrose solution and standard rat chow. The current results indicate that AgRP influences not only caloric intake but food selection as well and that the early effects of AgRP depend critically on an interaction with opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号