首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Riboswitches reflect a novel concept in gene regulation that is particularly suited for technological adaptation. Therefore, we characterized thermodynamically the ligand binding properties of a synthetic, tetracycline (tc)-binding RNA aptamer, which regulates gene expression in a dose-dependent manner when inserted into the untranslated region of an mRNA. In vitro, one molecule of tc is bound by one molecule of partially pre-structured and conformationally homogeneous apo-RNA. The dissociation constant of 770 pM, as determined by fluorimetry, is the lowest reported so far for a small molecule-binding RNA aptamer. Additional calorimetric analysis of RNA point mutants and tc derivatives identifies functional groups crucial for the interaction and including their respective enthalpic and entropic contributions we can propose detailed structural and functional roles for certain groups. The conclusions are consistent with mutational analyses in vivo and support the hypothesis that tc-binding reinforces the structure of the RNA aptamer, preventing the scanning ribosome from melting it efficiently.  相似文献   

2.
While many different RNA aptamers have been identified that bind to a plethora of small molecules only very few are capable of acting as engineered riboswitches. Even for aptamers binding the same ligand large differences in their regulatory potential were observed. We address here the molecular basis for these differences by using a set of unrelated neomycin-binding aptamers. UV melting analyses showed that regulating aptamers are thermally stabilized to a significantly higher degree upon ligand binding than inactive ones. Regulating aptamers show high ligand-binding affinity in the low nanomolar range which is necessary but not sufficient for regulation. NMR data showed that a destabilized, open ground state accompanied by extensive structural changes upon ligand binding is important for regulation. In contrast, inactive aptamers are already pre-formed in the absence of the ligand. By a combination of genetic, biochemical and structural analyses, we identified a switching element responsible for destabilizing the ligand free state without compromising the bound form. Our results explain for the first time the molecular mechanism of an engineered riboswitch.  相似文献   

3.
Cyclic diadenosine monophosphate (c-di-AMP) is a second messenger that is essential for growth and homeostasis in bacteria. A recently discovered c-di-AMP-responsive riboswitch controls the expression of genes in a variety of bacteria, including important pathogens. To elucidate the molecular basis for specific binding of c-di-AMP by a gene-regulatory mRNA domain, we have determined the co-crystal structure of this riboswitch. Unexpectedly, the structure reveals an internally pseudo-symmetric RNA in which two similar three-helix-junction elements associate head-to-tail, creating a trough that cradles two c-di-AMP molecules making quasi-equivalent contacts with the riboswitch. The riboswitch selectively binds c-di-AMP and discriminates exquisitely against other cyclic dinucleotides, such as c-di-GMP and cyclic-AMP-GMP, via interactions with both the backbone and bases of its cognate second messenger. Small-angle X-ray scattering experiments indicate that global folding of the riboswitch is induced by the two bound cyclic dinucleotides, which bridge the two symmetric three-helix domains. This structural reorganization likely couples c-di-AMP binding to gene expression.  相似文献   

4.
The neomycin-sensing riboswitch is an engineered riboswitch developed to regulate gene expression in vivo in the lower eukaryote Saccharomyces cerevisiae upon binding to neomycin B. With a size of only 27nt it is the smallest functional riboswitch element identified so far. It binds not only neomycin B but also related aminoglycosides of the 2′-deoxystreptamine class with high affinity. The regulatory activity, however, strongly depends on the identity of the aminoglycoside. As a prerequisite for the structure determination of riboswitch-ligand complexes we report here the 1H, 15N, 13C and partial 31P chemical shift assignments for the minimal functional 27nt neomycin sensing riboswitch RNA in complex with the 4,5-linked neomycin analog ribostamycin and the 4,6-linked aminoglycoside tobramycin.  相似文献   

5.
Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA-ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg(2+) compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg(2+) ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg(2+) ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine-Dalgarno sequence of the RNA only after metabolite binding.  相似文献   

6.
7.
Octaketide synthase (OKS) from Aloe arborescens is a plant-specific type III polyketide synthase (PKS) that catalyzes iterative condensations of eight molecules of malonyl-CoA to produce the C16 aromatic octaketides SEK4 and SEK4b. On the basis of the crystal structures of OKS, the F66L/N222G double mutant was constructed and shown to produce an unnatural dodecaketide TW95a by sequential condensations of 12 molecules of malonyl-CoA. The C24 naphthophenone TW95a is a product of the minimal type II PKS (whiE from Streptomyces coelicolor), and is structurally related to the C20 decaketide benzophenone SEK15, the product of the OKS N222G point mutant. The C24 dodecaketide naphthophenone TW95a is the first and the longest polyketide scaffold generated by a structurally simple type III PKS. A homology model predicted that the active-site cavity volume of the F66L/N222G mutant is increased to 748 Å3, from 652 Å3 of the wild-type OKS. The structure-based engineering thus greatly expanded the catalytic repertoire of the simple type III PKS to further produce larger and more complex polyketide molecules.  相似文献   

8.
The alkB gene, encoding an alkane monooxygenase in the actinomycete Gordonia sp. SoCg, was expressed in the non-alkane-degrading actinomycete Streptomyces coelicolor M145. The resulting engineered strain, M145-AH, can grow on n-hexadecane as sole carbon source. To unravel proteins associated with growth on n-alkanes, proteome of M145-AH after 6, 24, and 48 h of incubation in the Bushnell-Haas (BH) mineral medium containing n-hexadecane as sole carbon source (H condition) and in BH without any carbon source (0 condition) were compared using 2D-differential gel electrophoresis. Proteome analysis revealed significant changes only at 48 h, showing 48 differentially abundant proteins identified by mass spectrometry procedures. To asses if these proteins were specifically related to n-hexadecane metabolism, their expression was investigated, comparing H proteome with that of M145-AH incubated in BH with glucose as sole carbon source (G condition). Thus, protein expression profiles at 6, 24, and 48 h under H, 0, and G conditions were combined, revealing that M145-AH regulates in a temporally- and carbon source-dependent manner the expression of proteins involved in regulatory events, central carbon metabolism, respiration, β-oxidation, membrane transport, and amino acid and protein metabolism. Interestingly, 21 % of them, mostly involved in membrane transport and protein metabolism, showed a n-hexadecane-dependent regulation with regulatory proteins such as CRP likely to have a key role in M145-AH n-hexadecane growth. These results, expanding the knowledge on n-alkane utilization in Gram-positive bacteria, reveal genes to be targeted to develop an efficient S. coelicolor M145-AH-based bioremediation system.  相似文献   

9.
We investigated the gene regulatory mechanism of a previously engineered riboswitch +thiMN15#19 that turns on gene expression in response to thiamine pyrophosphate (TPP). In vitro enzymatic probing was performed to identify the secondary structures of the OFF conformations predicted by Mfold. Interestingly, enzymatic probing data of the riboswitch and its variants indicated that the riboswitch in its OFF state adopts two distinct structures. Moreover, further in vivo experiments suggested that both OFF structures contribute to the riboswitch function. A deeper understanding of how riboswitches function at the molecular level should enhance our ability to design synthetic riboswitches with new or improved characteristics.  相似文献   

10.
A natural mutant of human lysozyme, D67H, causes hereditary systemic nonneuropathic amyloidosis, which can be fatal. In this disease, insoluble beta-stranded fibrils (amyloids) are found in tissues stemming from the aggregation of partially folded intermediates of the mutant. In this study, we specifically compare the conformation and properties of the structures adopted from the induced unfolding, at elevated temperature, using molecular dynamics. To increase the sampling of the unfolding conformational landscape, three 5 ns trajectories are performed for each of the wild-type and mutant D67H proteins resulting in a total of 30 ns simulation. Our results show that the mutant unfolds slightly faster than the wild-type with both wild-type and mutant proteins losing most of their native secondary structure within the first 2 ns. They both develop random transient beta-strands across the whole polypeptide chain. Clustering analysis of all the conformations shows that a high population of the mutant protein conformations have a distorted beta-domain. This is consistent with experimental results suggesting that this region is pivotal in the formation of conformations prone to act as "seeds" for amyloid fiber formation.  相似文献   

11.
We have engineered an intein which spontaneously and reversibly forms a thiazoline ring at the native N-terminal Lys-Cys splice junction. We identified conditions to stablize the thiazoline ring and provided the first crystallographic evidence, at 1.54 Å resolution, for its existence at an intein active site. The finding bolsters evidence for a tetrahedral oxythiazolidine splicing intermediate. In addition, the pivotal mutation maps to a highly conserved B-block threonine, which is now seen to play a causative role not only in ground-state destabilization of the scissile N-terminal peptide bond, but also in steering the tetrahedral intermediate toward thioester formation, giving new insight into the splicing mechanism. We demonstrated the stability of the thiazoline ring at neutral pH as well as sensitivity to hydrolytic ring opening under acidic conditions. A pH cycling strategy to control N-terminal cleavage is proposed, which may be of interest for biotechnological applications requiring a splicing activity switch, such as for protein recovery in bioprocessing.  相似文献   

12.
Candida subhashii belongs to the CUG-Ser clade, a group of phylogenetically closely related yeast species that includes some human opportunistic pathogens, such as Candida albicans. Despite being present in the environment, C. subhashii was initially described as the causative agent of a case of peritonitis. Considering the relevance of whole-genome sequencing and analysis for our understanding of genome evolution and pathogenicity, we sequenced, assembled and annotated the genome of C. subhashii type strain. Our results show that C. subhashii presents a highly heterozygous genome and other signatures that point to a hybrid ancestry. The presence of functional pathways for assimilation of hydroxyaromatic compounds goes in line with the affiliation of this yeast with soil microbial communities involved in lignin decomposition. Furthermore, we observed that different clones of this strain may present circular or linear mitochondrial DNA. Re-sequencing and comparison of strains with differential mitochondrial genome topology revealed five candidate genes potentially associated with this conformational change: MSK1, SSZ1, ALG5, MRPL9 and OYE32.  相似文献   

13.
Two single gene cassettes, each containing one of the individual gene (γ-glutamylcysteine synthetase gene GSH1 or glutathione synthetase gene GSH2), were constructed under the control of alcohol dehydrogenase (ADH1) promoter and their respective native terminators. The recombinant plasmids constructed with Kan r or Hyg r as the selective markers and were transformed into Saccharomyces cerevisiae separately and jointly. Three engineered strains, GSH1-enhanced strain S.TS013/GSH1, GSH2-enhanced strain S.TS013/GSH2 and GSH1+GSH2 double-enhanced strain S.TS013/GSH1+GSH2, were constructed. Glutathione production using the recombinant strains to improve was then determined. By the cell dosage proportions of two engineered strains (S.TS013/GSH1, S.TS013/GSH2) and a two-stage reaction, GSH productivity increased by 84 and 59 % over that of the host strain and the S.TS013/GSH1+GSH2 strain, respectively.  相似文献   

14.
Molecular analysis of a synthetic tetracycline-binding riboswitch   总被引:2,自引:1,他引:1  
  相似文献   

15.
16.
Marine planktonic crenarchaeota have escaped all cultivation attempts to date, all crenarchaeota growing in pure culture so far being hyperthermophiles. Here, we present a comparative genomic analysis of a 16S- plus 23S-rDNA-containing fragment of a crenarchaeote retrieved from an environmental genomic library constructed from picoplankton collected at 500 m depth in the Antarctic Polar Front. The clone DeepAnt-EC39 contained an insert of 33.3 kbp, which was completely sequenced. DeepAnt-EC39 appears to represent a lineage specific to deep-sea waters but widespread geographically, as revealed by the analysis of the 16S-23S-rDNA intergenic spacer region. A comparison with previously sequenced marine crenarchaeotal genomic clones also containing an rrn operon (74A4, 4B7 and Cenarchaeum symbiosum strains A and B) revealed a highly variable structure involving gene rearrangements and insertions/deletions. The surroundings of the rrn operon and the contiguous glutamate-1-semialdehyde aminotransferase gene appear hot spots for recombination. Phylogenetic analyses of all individual predicted proteins revealed the existence of several likely cases of horizontal gene transfer both, between the two archaeal kingdoms and between the two prokaryotic domains. The most frequent horizontal transfers appear to involve genes from mesophilic methanogenic euryarchaeota related to Methanosarcinales. We hypothesise that the acquisition of genes from mesophilic bacteria and euryarchaeota has played a major role in the adaptation of Group I crenarchaeota to life at lower temperatures.  相似文献   

17.
The genus Mesorhizobium includes species nodulating several legumes, such as chickpea, which has a high agronomic importance. Chickpea rhizobia were originally described as either Mesorhizobium ciceri or M. mediterraneum. However, rhizobia able to nodulate chickpea have been shown to belong to several different species within the genus Mesorhizobium. The present study used a multilocus sequence analysis approach to infer a high resolution phylogeny of the genus Mesorhizobium and to confirm the existence of a new chickpea nodulating genospecies. The phylogenetic structure of the Mesorhizobium clade was evaluated by sequence analysis of the 16S rRNA gene, ITS region and the five core genes atpD, dnaJ, glnA, gyrB, and recA. Phylogenies obtained with the different genes are in overall good agreement and a well-supported, almost fully resolved, phylogenetic tree was obtained using the combined data. Our phylogenetic analyses of core genes sequences and their comparison with the symbiosis gene nodC, corroborate the existence of one new chickpea Mesorhizobium genospecies and one new symbiovar, M. opportunistum sv. ciceri. Furthermore, our results show that symbiovar ciceri spreads over six species of mesorhizobia. To our knowledge this study shows the most complete Mesorhizobium multilocus phylogeny to date and contributes to the understanding of how a symbiovar may be present in different species.  相似文献   

18.
Mutational analysis of the purine riboswitch aptamer domain   总被引:2,自引:0,他引:2  
Gilbert SD  Love CE  Edwards AL  Batey RT 《Biochemistry》2007,46(46):13297-13309
The purine riboswitch is one of a number of mRNA elements commonly found in the 5'-untranslated region capable of controlling expression in a cis-fashion via its ability to directly bind small-molecule metabolites. Extensive biochemical and structural analysis of the nucleobase-binding domain of the riboswitch, referred to as the aptamer domain, has revealed that the mRNA recognizes its cognate ligand using an intricately folded three-way junction motif that completely encapsulates the ligand. High-affinity binding of the purine nucleobase is facilitated by a distal loop-loop interaction that is conserved between both the adenine and guanine riboswitches. To understand the contribution of conserved nucleotides in both the three-way junction and the loop-loop interaction of this RNA, we performed a detailed mutagenic survey of these elements in the context of an adenine-responsive variant of the xpt-pbuX guanine riboswitch from Bacillus subtilis. The varying ability of these mutants to bind ligand as measured by isothermal titration calorimetry uncovered the conserved nucleotides whose identity is required for purine binding. Crystallographic analysis of the bound form of five mutants and chemical probing of their free state demonstrate that the identity of several universally conserved nucleotides is not essential for formation of the RNA-ligand complex but rather for maintaining a binding-competent form of the free RNA. These data show that conservation patterns in riboswitches arise from a combination of formation of the ligand-bound complex, promoting an open form of the free RNA, and participating in the secondary structural switch with the expression platform.  相似文献   

19.
The distinction between native and introduced flora within isolated land masses presents unique challenges. The geological and colonisation history of Australia, the world's largest island, makes it a valuable system for studying species endemism, introduction, and phylogeny. Using this strategy we investigated Australian cosmopolitan grasses belonging to the genus Cynodon. While it is believed that seven species of Cynodon are present in Australia, no genetic analyses have investigated the origin, diversity and phylogenetic history of Cynodon within Australia. To address this gap, 147 samples (92 from across Australia and 55 representing global distribution) were sequenced for a total of 3336bp of chloroplast DNA spanning six genes. Data showed the presence of at least six putatively introduced Cynodon species (C. transvaalensis, C. incompletus, C. hirsutus, C. radiatus, C. plectostachyus and C. dactylon) in Australia and suggested multiple recent introductions. C. plectostachyus, a species often confused with C. nlemfuensis, was not previously considered to be present in Australia. Most significantly, we identified two common haplotypes that formed a monophyletic clade diverging from previously identified Cynodon species. We hypothesise that these two haplotypes may represent a previously undescribed species of Cynodon. We provide further evidence that two Australian native species, Brachyachne tenella and B. convergens belong in the genus Cynodon and, therefore, argue for the taxonomic revision of the genus Cynodon.  相似文献   

20.
CD and nmr studies have been carried out on aqueous trifluoroethanol (TFE) solutions of bradykinin (BK) and a bradykinin antagonist. The CD results exhibit a striking effect of TFE on the spectra of BK, with sequence Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, and the BK antagonist, with sequence D -Arg-Arg-Pro-Hyp-Gly-Thi-D -Ser-D -Cpg-Cpg-Arg [where Hyp is 4-hydroxy-L -proline; Thi refers to β-(2-thienyl)-L -alanine and Cpg refers to α-cyclopentylglycine]. The effect of increasing concentration of TFE in water on the difference ellipticity at 222 nm was examined and showed that BK may be a mixture of at least two different conformers, one of which largely forms when the TFE concentration is increased beyond 80%. The linear extrapolation of 100% of the difference ellipticity of BK at low TFE concentrations yields a value in agreement with that shown by the BK antagonist, indicating that the conformation of BK at the lower TFE concentrations is similar to that of the BK antagonist. The conformational analysis was carried out using both one-dimensional and two-dimensional 1H-nmr techniques. The total correlation spectroscopy (TOCSY) spectrum of BK in a 60/40% (v/v) TFE/H2O solution at 10°C and a nuclear Overhauser effect spectroscopy (NOESY) spectrum that shows only sequential Hα(i) – NH(i + 1) or the Hα(i) – Hδδ′(i + 1) NOEs indicate that the majority of the molecules adopt an all-trans extended conformation. The TOCSY for BK in the 95/5% (v/v) TFE/H2O solution shows that there are two major conformations in the solution with about equal population. The NOESY experiment shows two new important cross peaks for one conformation, namely Pro2(α)-Pro3 (α) and the Pro2(α)-Gly4(NH), indicating a cis Pro2-Pro3 bond and a type VI β-turn between residues Arg1 and Gly4 involving cis proline at position 3, respectively. The low temperature coefficient of Gly4 for this conformation suggests the presence of an intramolecular hydrogen bond, therefore a type VIa β-turn is present. The other conformation is all trans and extended. The BK antafonist shows difference CD spectra in TFE solutions referred to H2O that are superficially indicative of a β-bend. However, nmr speaks against this possibility, as only one set of peaks were observed in the TOCSY and NOESY experiments, indicating an all-trans extended confirmation over the range of TFE concentrations. The BK-antagonist CD data suggest that solvent perturbation of the CD of an extended confirmation perturbation of the optical activity of the thienyl moiety of the peptide since the CD spectrum of N-acetyl-β-thienyl-L -alanine N-methylamide is strongly perturbed by TFE. The present results again demonstrate the complementary relationship between CD and nmr. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号