首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid B subunit (coligenoid) of heat-labile enterotoxin could not be made from human heat-labile enterotoxin B subunit(LTh-B) and porcine LTp-B subunit(LTp-B). LTp-B monomer was able to form coligenoid by reassociation with homologous LTp-B monomer, but not with heterogeneous LTh-B monomer and vice versa. The dissociation of both coligenoids into monomers by SDS treatment occurred in a time-dependent manner, but the dissociation of LTh-B colligenoid was faster than that of LTp-B coligenoid. The association of LTp-B monomer is tighter than that of LTh-B monomer. The pI values of LTp-B coligenoid, LTp-B monomer and denatured LTp-B monomer were similar at 9.6-9.8, while the pI values of LTh-B coligenoid, LTh-B monomer and denatured LTh-B monomer were determined as 5.6-5.8, 9.2-9.6 and 9.2-9.6, respectively. All the ionic amino acids of LTp-B exist on the coligenoid surface. The difference in pI values between LTh-B coligenoid and LTh-B monomer suggests that some basic amino acids are located within the LTh-B coligenoid complex, but are exposed in the LTh-B monomer. These data suggest that the 4 amino acid substitutions between LTh-B and LTp-B result in a three dimensional structure difference and a less stable formation of LTh-B coligenoid compared to LTp-B coligenoid.  相似文献   

2.
We have found that the distribution of the three main monomer species found in tetrameric concanavalin A was approximately 73% type A monomer (27,000 MW); 4% type B monomer (14,000 MW); and 23% type C monomer (12,000 MW). When this tetrameric concanavalin A was bound to human erythrocytes and the monomer distribution of the bound concanavalin A was examined, we found that it resembled that of the concanavalin A used in the binding reaction. However, when competing sugars were used, either to inhibit the binding of concanavalin A or to remove previously-bound lectin, examination of cell-bound monomer distribution revealed that there was a significant increase in type C monomers and a simultaneous decrease in type A monomers. The shifts in monomer distribution varied depending on experimental conditions and the particular competing inhibitor employed. These findings were taken to indicate that not all concanavalin A cell surface interactions are identical and that quantitative methods are available for studying this phenomenon.  相似文献   

3.
The use of a novel chiral functional monomer system in molecular imprinting protocols is described. The monomer, dibenzyl (2R,3R)-O-monoacryloyl tartrate, possesses a hydroxyl moiety which can be used to direct template-functional monomer interactions during molecular imprinting polymerization. This system simultaneously positions benzyl ester-protected carboxyl groups in close proximity to the template, which upon deprotection yield recognition sites with stronger ligand-binding capacities. Furthermore, the inherent chirality of the monomer engenders the polymer with an inbuilt preference for a given stereoisomer. Application of the system to the molecular imprinting of the cinchonidine alkaloids (+)-cinchonine and (-)-cinchonidine yielded stereoselective polymers. The effect of imprinting (+)-cinchonine produced a polymer which more than reversed the inherent chiral selectivity of the chiral monomer residues present in the matrix.  相似文献   

4.
Enzyme I of the bacterial phosphotransferase system can exist in a monomer/dimer equilibrium which may have functional significance. Each monomer contains two tryptophan residues. It is demonstrated that the decay of both the monomer and the dimer can be described by a biexponential. The decay times depend on the temperature and at 6 degrees C the decay times are tau 1 = 0.4 ns and tau 2 = 3.2 ns for the monomer and tau 3 = 3.2 ns and tau 4 = 7.2 ns for the dimer form of the enzyme. The changes in the fluorescence decay parameters can be utilized to measure the equilibrium constant for the monomer/dimer transition.  相似文献   

5.
It was previously shown that the Cro repressor from phage lambda, which is a dimer, can be converted into a stable monomer by a five-amino acid insertion. Phe58 is the key residue involved in this transition, switching from interactions which stabilize the dimer to those which stabilize the monomer. Structural studies, however, suggested that Phe58 did not penetrate into the core of the monomer as well as it did into the native dimer. This was strongly supported by the finding that certain core-repacking mutations, including in particular, Phe58-->Trp, increased the stability of the monomer. Unexpectedly, the same substitution also increased the stability of the native dimer. At the same time it decreased the affinity of the dimer for operator DNA. Here we describe the crystal structures of the Cro F58W mutant, both as the monomer and as the dimer. The F58W monomer crystallized in a form different from that of the original monomer. In contrast to that structure, which resembled the DNA-bound form of Cro, the F58W monomer is closer in structure to wild-type (i.e. non-bound) Cro. The F58W dimer also crystallizes in a form different from the native dimer but has a remarkably similar overall structure which tends to confirm the large changes in conformation of Cro on binding DNA. Introduction of Trp58 perturbs the position occupied by the side-chain of Arg38, a DNA-contact residue, providing a structural explanation for the reduction in DNA-binding affinity.The improved thermal stability is seen to be due to the enhanced solvent transfer free energy of Trp58 relative to Phe58, supplemented in the dimer structure, although not the monomer, by a reduction in volume of internal cavities.  相似文献   

6.
The great majority of trimeric porins of Gram-negative bacteria cannot be dissociated into monomers without disrupting their folded conformation. The porin of Campylobacter jejuni, however, displays two folded structures, a classical oligomer and a monomer resistant to detergent denaturation. We probed the transition of trimer to monomer using light scattering experiments and examined the secondary structures of these two molecular states by infra-red spectroscopy. The channel-forming properties of both trimer and monomer were studied after incorporation into artificial lipid bilayers. In these conditions, the trimer induced ion channels with a conductance value of 1200 pS in 1 M NaCl. The pores showed marked cationic selectivity and sensitivity to low voltage. Analysis of the isolated monomer showed nearly the same single-channel conductance and the same selectivity and sensitivity to voltage. These results indicate that the folded monomer form of C. jejuni MOMP displays essentially the same pore-forming properties as the native trimer.  相似文献   

7.
The stability (reflected in denaturation temperature, Td) of defatted human albumin monomer, monitored by differential scanning calorimetry, decreases with increasing protein concentration. This is shown to be compatible with a simple model in which reversible polymerization of denatured monomer promotes unfolding. This model also predicts an increase in transition cooperativity with decreasing protein concentration whereas experimentally cooperativity decreases because the rate of thermally induced polymerization of unfolded monomer is slow relative to the scan rate of the calorimeter. The denaturation of undefatted human albumin monomer, subsaturated with high affinity endogenous long-chain fatty acid (LCFA), was previously observed by differential scanning calorimetry to be a biphasic process. Td for the first endotherm, associated with the denaturation of LCFA-poor species, decreases with increasing protein concentration similar to that for defatted monomer whereas Td for the second endotherm, associated with denaturation of LCFA-rich species, is independent of concentration. The magnitude of the concentration dependence of Td relates directly to the extent of polymerization of denatured monomer, which decreases with increasing level of bound ligand. The bimodal thermogram observed for undefatted monomer persists upon simultaneous extrapolation of Td values to low concentration and low scan rate thereby demonstrating that this biphasic denaturation arising from ligand redistribution during denaturation is a true thermodynamic phenomenon and not an artifact of specific experimental conditions or the method used to induce denaturation.  相似文献   

8.
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.  相似文献   

9.
14C-labeled peptidoglycan monomer was encapsulated into negatively charged, multilamellar liposomes composed of egg phosphatidylcholine, cholesterol and dicetylphosphate. Excretion and tissue distribution of the label in mice were studied after intravenous injections. Encapsulation of peptidoglycan monomer into liposomes as compared to free peptidoglycan monomer, resulted in increased retention of the label, particulary in the liver and to a lesser extent in spleen. The excretion was drastically reduced and delayed even after 4 days when cholesterol-rich (phosphatidylcholine/cholesterol, 7:5 molar ratio) liposomes were used for encapsulation of peptidoglycan monomer. Peptidoglycan monomer and liposomes, when tested separately, stimulate the immune response to sheep erythrocytes in mice. However, there was no significant additive or synergistic effect when peptidoglycan monomer was encapsulated into liposomes.  相似文献   

10.
Hidden self-association of proteins   总被引:1,自引:0,他引:1  
Sedimentation equilibrium measurements were carried out on solutions of bovine serum albumin, aldolase, and ovalbumin in phosphate-buffered saline, pH 7.2, at 10 degrees C. The data obtained for each protein were analyzed to yield the dependence of apparent weight-average molecular weight upon protein concentration, over a concentration range of ca 1-200 g/L. Using the approximate theory of Chatelier and Minton [1987) Biopolymers 26, 507-524), models are formulated for the dependence of apparent weight-average molecular weight upon concentration in non-ideal solutions containing proteins which may self-associate according to a monomer/n-mer or a monomer/dimer/tetramer scheme. The concentration dependence data for serum albumin may be accounted for, assuming either no self-association or weak monomer/dimer association. The data for aldolase may be accounted for assuming either weak monomer/dimer or weak monomer/trimer association. The data for ovalbumin may be accounted for assuming either weak monomer/trimer or weak monomer/dimer/tetramer association. The associations do not approach saturation at the highest concentrations studied, and the standard-state free energy changes accompanying self-association amount to less than 4 kcal/mol of intermolecular contacts, suggesting that non-specific clustering of protein molecules at high concentration rather than the formation of specific complexes is being observed.  相似文献   

11.
The affects of lipase concentration on ring-opening bulk polymerizations of epsilon-caprolactone and trimethylene carbonate were studied by using Novozym 435 (immobilized form of lipase B from Candida antarctica) as biocatalyst. The polymerization of epsilon-caprolactone was carried out in bulk at 70 degrees C. Three lipase concentrations of 9.77, 1.80 and 0.50 mg/mmol epsilon-CL were used in the experiment. The results showed that increasing the lipase concentration used in the polymerization system resulted in an increased rate of monomer consumption. For an enzyme concentration of 9.8 mg lipase per mmol monomer, an 80% monomer conversion was achieved in a 4-h time period, while for the lower enzyme concentration of 1.8 mg lipase per mmol monomer, 48 h were needed to reach monomer conversion. Linear relationships between Mn and monomer conversions were observed in all three enzyme concentrations, suggesting that the product molecular weight may be controlled by the stoichiometry of the reactants for these systems. At the same monomer conversion level, however, Mn decreased with increasing enzyme concentration. After correcting for the amount of monomer consumed in initiation, the plot of ln[([M]o - [M]i)/([Mt] - [M]i)] versus reaction time was found to be linear, suggesting that the monomer consumption followed a first-order rate law and no chain termination occurred. For the TMC systems, the polymerization was carried out in bulk at 55 degrees C. Similar to the epsilon-CL systems, increasing the Novozym 435 concentration from 8.3 to 23.6 mg/mmol TMC increased the rate of monomer conversion. Unlike the epsilon-CL systems, however, nonlinear relationships were obtained between Mn and monomer conversion, indicating that possible chain transfer and/or slow initiation had taken place in these systems. Consistent with the above result, nonlinear behavior was observed for the plot of ln[[M]o/[M]t] versus reaction time.  相似文献   

12.
Selective reduction of seminal ribonuclease by glutathione   总被引:1,自引:0,他引:1  
Incubation of seminal ribonuclease with glutathione leads to the formation of a monomeric species which exhibits twice the specific activity of the native dimer. The monomer was found to possess two mixed disulfides of glutathione at residues 31 and 32, the residues ordinarily involved in the intermolecular disulfide bonds linking the subunits of the native dimer. Formation of the monomer results in only minor changes in the far ultraviolet circular dichroism spectra. The rate of the glutathione-facilitated dissociation reaction is fairly slow, requiring 60 min for completion. Attempts to dimerize the monomer all failed, implying that the dissociation reaction is irreversible. The glutathione reduced monomer was compared with the monomer formed during the regeneration of reduced, denatured bovine seminal ribonuclease in the presence of glutathione. By all criteria examined, the two monomeric forms are identical. It is concluded that the mixed disulfide monomer is the favored form of the enzyme in the presence of glutathione.  相似文献   

13.
Phosphatidyl serine induces a concentration-dependent inhibition of polymerization of fibrin monomer and forms a complex with it, which is stable to gel-filtration and chloroform treatment. During plasmin proteolysis phosphatidyl serine remains tightly bound to the fragments of the fibrin monomer molecule formed. A correlation between the amount of amino acids responsible for phospholipid binding and that of phosphatidyl serine bound to the fragment of the fibrin monomer molecule was observed. The introduction of phosphatidyl serine into the blood flow causes a decrease of the thrombin-precipitated fibrinogen and fibrin monomer obtained from animal plasma. At the same time phosphatidyl serine is present in fibrinogen and in high amounts in the fibrin monomer. It is assumed that phosphatidyl serine which controls thrombinogenesis and enzymatic and non-enzymatic steps of fibrin production can thus be regarded as a natural stabilizer of the blood.  相似文献   

14.
The formation of monomer from several hemoglobins has been investigated by sedimentation equilibrium. The use of the split-beam photoelectric scanning absorption optical system has enabled observations to be made routinely down to 1 μg/ml. (6.2 × 10−8m-heme) with strict spectral control of the integrity of the hemoglobin molecule. The results show that the dissociation constant of dimer to monomer at neutral pH and moderate ionic strength is so small that monomer is present in reversible equilibrium with dimer only in fractions too small to be detectable. Any appreciable monomer formation is irreversible and accompanied by usually pronounced spectral changes. This irreversible monomer formation is probably a consequence of the presence of heavy-metal ions in solution and may be inhibited by 10−3m-EDTA. Hemoglobin ligands possessing chelating ability also inhibit monomer formation.  相似文献   

15.
The coelomic haemoglobin of Glycera dibranchiata is known to be separable into monomeric and higher-Mr fractions. Although exhibiting homogeneity with respect to Mr, the extent of haemoglobin heterogeneity for the monomer fraction has never been adequately assayed. In the present paper we demonstrate that there exists in the monomer haemoglobin fraction reproducibly detectable heterogeneity regardless of the presence or absence of proteinase inhibitors during the isolations. These results show that, considered on the same time scale as previous preparations used for amino acid sequencing, crystallography and kinetics, the monomer haemoglobin fraction is highly heterogeneous. Application of ion-exchange chromatography and ion-filtration methods resulted in the isolation of four resolvable haem protein components from the Glycera monomer haemoglobin fraction. Three of these components were isolated in sufficient quantity to employ proton n.m.r. as a successful analytical tool for discriminating the individual haemoglobins. These results are not surprising. Several previous studies indicated less extensive heterogeneity in the monomer fraction. Moreover, the ability of the Glycera monomer haemoglobin to bind oxygen at even quite low partial pressures has been attributed to functional diversity originating in multiple haemoglobin components. The present work reveals the extent of the haemoglobin heterogeneity. The results show that it is more extensive than previously believed. Examination of this monomer fraction is particularly important, since crystallography indicates that one of the components of the monomer fraction lacks the E-7 (distal) histidine residue. As a consequence, the identification of such extensive heterogeneity is important to many previously published ligand-binding studies.  相似文献   

16.
17.
The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of 153 monomer units, representing alphoid components of at least 12 different human chromosomes. Based on the analysis of sequence variation at each position within the 171 basepair monomer, we have derived a consensus sequence for the monomer unit of human alpha satellite DNA which we suggest may reflect the monomer sequence from which different chromosomal subsets have evolved. Sequence heterogeneity is evident at each position within the consensus monomer unit and there are no positions of strict nucleotide sequence conservation, although some regions are more variable than others. A substantial proportion of the overall sequence variation may be accounted for by nucleotide changes which are characteristic of monomer components of individual chromosomal subsets or groups of subsets which have a common evolutionary history.  相似文献   

18.
Derivatives of yeast iso-1 cytochrome c, chemically modified at Cys-102 (Cys-102 acetamide-derivatized monomer, Cys-102 thionitrobenzoate-derivatized monomer, Cys-102 S-methylated monomer, and the disulfide dimer), exhibit different spectral and physicochemical properties relative to the native, unmodified protein, depending on the nature of the modifying group. The results of proton NMR studies on the Cys-102 acetamidederivatized monomer of iso-1 ferricytochrome c indicate that the conformational characteristics of the heme environment in this protein derivative are intermediate between those of the unmodified monomer and disulfide dimer forms of the protein. Measurements of the pKa of the alkaline transitions of the five forms of iso-1 ferricytochrome c provided values of 8.89, 8.82, 8.67, 8.47, and 8.50 for the unmodified monomer, S-methylated monomer, acetamide-derivatized monomer, thionitrobenzoate-derivatized monomer, and disulfide dimer, respectively. The results of proton NMR studies of the reduced form of these proteins suggest that the heme environments of the unmodified monomer and disulfide dimer derivatives of iso-1 ferrocytochrome c are similar and indicate that treatment of the thionitrobenzoate-derivatized and disulfide dimer forms of the protein with sodium dithionite results in cleavage of the disulfide bonds at position 102. Circular dichroism studies reveal that only the disulfide dimer form of iso-1 ferricytochrome c exhibits a Soret CD spectrum which differs from the native, unmodified monomer in that the intensity of the negative band at approximately 420 nm is diminished in the spectrum of the dimer relative to the spectrum of the monomer. Soret CD spectra of the ascorbate-reduced form of all protein derivatives are similar. The process of autoreduction of yeast iso-1 ferricytochrome c is shown to occur in the absence of a free sulfhydryl group at position 102 and is exacerbated under moderately high pH conditions. These results are suggestive of the presence of a redox-active amino acid, perhaps a tyrosine, in yeast iso-1 cytochrome c.  相似文献   

19.
The FokI restriction endonuclease recognizes an asymmetric DNA sequence and cuts both strands at fixed positions upstream of the site. The sequence is contacted by a single monomer of the protein, but the monomer has only one catalytic centre and forms a dimer to cut both strands. FokI is also known to cleave DNA with two copies of its site more rapidly than DNA with one copy. To discover how FokI acts at a single site and how it acts at two sites, its reactions were examined on a series of plasmids with either one recognition site or with two sites separated by varied distances, sometimes in the presence of a DNA-binding defective mutant of FokI. These experiments showed that, to cleave DNA with one site, the monomer bound to that site associates via a weak protein–protein interaction with a second monomer that remains detached from the recognition sequence. Nevertheless, the second monomer catalyses phosphodiester bond hydrolysis at the same rate as the DNA-bound monomer. On DNA with two sites, two monomers of FokI interact strongly, as a result of being tethered to the same molecule of DNA, and sequester the intervening DNA in a loop.  相似文献   

20.
C-reactive protein (CRP) has two structurally distinct isoforms, the CRP pentamer and the CRP monomer. A role for the CRP monomer in atherosclerosis is emerging, but the underlying mechanisms are only beginning to be understood. Monocytes are an important contributor to atherosclerosis, and foam cell formation is the hallmark of atherogenesis. However, whether the CRP monomer can directly interact with the monocytes and modulate their responses remains unknown. Furthermore, although FcγRIII (CD16) has been identified as the receptor for the CRP monomer on neutrophils, its role in mediating the CRP monomer’s biological effects in other cell types has been questioned. In this study, we investigated the interaction of the CRP monomer with the monocytes using the U937 monocytic cell line. The CRP monomer specifically binds to U937 cells. This binding is unique in that it is independent of FcγRs and insensitive to protease digestion of the cell surface proteins. Further assays revealed that the CRP monomer directly incorporates into the plasma membrane. Interestingly, the presence of the CRP monomer efficiently retards oxidized low-density lipoprotein-induced foam cell formation of PMA-differentiated U937 macrophages and peripheral blood monocytic cell-derived macrophages. These findings provide additional evidence for the notion that the CRP monomer is an active CRP isoform that plays a role in atherogenesis via the direct modulation of the behavior of the monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号