首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Existing evidence suggests that neuropeptide Y (NPY) acts as a neurotransmitter in vascular smooth muscle and is coreleased with norepinephrine from sympathetic nerves. We hypothesized that release of NPY stimulates NPY Y(1) receptors in the skeletal muscle vasculature to produce vasoconstriction during dynamic exercise. Eleven mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. In resting dogs (n = 4), a 2.5-mg bolus of BIBP-3226 (NPY Y(1) antagonist) infused into the femoral artery increased external iliac conductance by 150 +/- 82% (1.80 +/- 0.44 to 3.50 +/- 0.14 ml.min(-1).mmHg(-1); P < 0.05). A 10-mg bolus of BIBP-3226 infused into the femoral artery in dogs (n = 7) exercising on a treadmill at a moderate intensity (6 miles/h) increased external iliac conductance by 28 +/- 6% (6.00 +/- 0.49 to 7.64 +/- 0.61 ml.min(-1).mmHg(-1); P < 0.05), whereas the solvent vehicle did not (5.74 +/- 0.51 to 5.98 +/- 0.43 ml.min(-1).mmHg(-1); P > 0.05). During exercise, BIBP-3226 abolished the reduction in conductance produced by infusions of the NPY Y(1) agonist [Leu(31),Pro(34)]NPY (-19 +/- 3 vs. 0.5 +/- 1%). Infusions of BIBP-3226 (n = 7) after alpha-adrenergic receptor antagonism with prazosin and rauwolscine also increased external iliac conductance (6.82 +/- 0.43 to 8.22 +/- 0.48 ml.min(-1).mmHg(-1); P < 0.05). These data support the hypothesis that NPY Y(1) receptors produce vasoconstriction in exercising skeletal muscle. Furthermore, the NPY Y(1) receptor-mediated tone appears to be independent of alpha-adrenergic receptor-mediated vasoconstriction.  相似文献   

3.
Oxygen (O2) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can increase without reductions in blood oxygenation and to determine whether erythrocyte O2 off-loading and related ATP vascular mechanisms are impaired in humans with mutations of mtDNA. Leg vascular hemodynamic, oxygenation and ATP were investigated in ten patients with mtDNA mutations and ten matched healthy control subjects: 1) at rest during normoxia, hypoxia, hyperoxia and intra-femoral artery ATP infusion, and 2) during passive and dynamic one-legged knee-extensor exercises. At rest, blood flow (LBF), femoral arterial and venous blood oxygenation and plasma ATP were similar in the two groups. During dynamic exercise, LBF and vascular conductance increased 9–10 fold in the patients despite erythrocyte oxygenation and leg O2 extraction remained unchanged (p < 0.01). In the patients, workload-adjusted LBF was 28% to 62% higher during submaximal- and maximal exercises and was associated with augmented plasma ATP. The appropriate hemodynamic adjustments during severe hypoxia and ATP infusion suggest that erythrocyte O2 off-loading and related ATP vascular mechanisms are intact in patients with mtDNA mutations. Furthermore, greater increase in plasma ATP and LBF at a given metabolic demand in the patients, in concert with unchanged oxyhemoglobin, suggest that erythrocyte O2 off-loading is not obligatory for the exercise-induced increase in blood flow and intravascular ATP concentration.  相似文献   

4.
5.
The muscle pump theory holds that contraction aids muscle perfusion by emptying the venous circulation, which lowers venous pressure during relaxation and increases the pressure gradient across the muscle. We reasoned that the influence of a reduction in venous pressure could be determined after maximal pharmacological vasodilation, in which the changes in vascular tone would be minimized. Mongrel dogs (n = 7), instrumented for measurement of hindlimb blood flow, ran on a treadmill during continuous intra-arterial infusion of saline or adenosine (15-35 mg/min). Adenosine infusion was initiated at rest to achieve the highest blood flow possible. Peak hindlimb blood flow during exercise increased from baseline by 438 +/- 34 ml/min under saline conditions but decreased by 27 +/- 18 ml/min during adenosine infusion. The absence of an increase in blood flow in the vasodilated limb indicates that any change in venous pressure elicited by the muscle pump was not adequate to elevate hindlimb blood flow. The implication of this finding is that the hyperemic response to exercise is primarily attributable to vasodilation in the skeletal muscle vasculature.  相似文献   

6.
To test the hypothesis that adenosine improves skeletal muscle cell function, we exposed curarized mouse soleus and extensor digitorum longus (EDL) to a range of concentrations of adenosine (10(-9) M to 10(-5) M). Muscles contracted in Krebs-Henseleit bicarbonate buffer (27 degrees C, 95% O2 and 5% CO2) for 500 ms at 50 Hz once every 90 s. Soleus fatigued significantly less with adenosine present at concentrations of 10(-8) M and higher than with the Krebs-Henseleit vehicle control. Adenosine significantly improved force generation or delayed fatigue of EDL only with the initial adenosine challenge. To investigate the receptor population involved, we exposed soleus to agonists specific for A1 receptors (N6-cyclopentyladenosine, CPA), or A2 receptors (CGS 21680 hydrochloride, CGS), or A3 receptors (N6-benzyl-5'-N-ethylcarboxamidoadenosine, BNECA). CPA (A1) significantly decreased fatigue compared with the Krebs-Henseleit vehicle control at concentrations of 10(-9) M and higher. Muscles exposed to the A2 and A3 agonists did not differ from a Krebs-Henseleit plus methanol control. Phenylephrine (10(-6) M), an alpha-adrenergic agonist that increases the concentration of inositol triphosphate (IP3), significantly improved developed force in soleus. Neither a permeable cAMP analog, 8-bromo-cAMP (10(-5) M), nor a beta, agonist, isoproterenol (10(-6) M), had an effect on force generation in the soleus when compared with a saline control. Thus adenosine slowed fatigue in slow-twitch skeletal muscle through A1 receptors.  相似文献   

7.
The purpose of the present study was to characterize the role of catecholamines in the regulation of skeletal muscle glycogen metabolism during exercise. Using the rat hindlimb perfusion technique we have measured skeletal muscle glycogen content, glycogen phosphorylase and synthase activities in sympathectomized and/or demedullated rats under epinephrine treatment (10(-7) M) at rest and during muscle contraction. When epinephrine and/or norepinephrine deficiency was induced, muscle contraction resulted in a decrease in glycogen content (-63%) despite a decrease in glycogen phosphorylase activity ratio (0.25 to 0.11; p less than 0.001) and an increase in glycogen synthase activity ratio (0.13 to 0.27; p less than 0.001). Under these conditions, epinephrine treatment further reduced glycogen content while blunting the changes in the activity ratio of the rate-limiting enzymes. These data indicate that catecholamines do not play a primary role in skeletal muscle glycogen breakdown during acute exercise and suggest that allosteric regulators may be of prime importance.  相似文献   

8.
9.
The present study compared ouabain-sensitive unidirectional K+ flux into (JinK) and out of (JoutK) perfused rat hindlimb skeletal muscle in situ and mouse flexor digitorum brevis (FDB) in vitro. In situ, 5 mM ouabain inhibited 54 +/- 4% of the total JinK in 28 +/- 1 min, and increased the net and unidirectional efflux of K+ within 4 min. In contrast, 1.8 mM ouabain inhibited 40 +/- 8% of the total JinK in 38 +/- 2 min, but did not significantly affect JoutK. In vitro, 1.8 and 0.2 mM ouabain decreased JinK to a greater extent (83 +/- 5%) than in situ, but did not significantly affect 42K loss rate compared with controls. The increase in unidirectional K+ efflux (JoutK) with 5 mM ouabain in situ was attributed to increased K+ efflux through cation channels, since addition of barium (1 mM) to ouabain-perfused muscles returned JoutK to baseline values within 12 min. Perfusion with 5 mM ouabain plus 2 mM tetracaine for 30 min decreased JinK 46 +/- 9% (0.30 +/- 0.03 to 0.16 +/- 0.02 micromol x min(-1) x g(-1)), however tetracaine was unable to abolish the ouabain-induced increase in unidirectional K+ efflux. In both rat hindlimb and mouse FDB, tetracaine had no effect on JoutK. Perfusion of hindlimb muscle with 0.1 mM tetrodotoxin (TTX, a Na+ channel blocker) decreased JinK by 15 +/- 1%, but had no effect on JoutK; subsequent addition of ouabain (5 mM) decreased JinK a further 32 +/- 2%. The ouabain-induced increase in unidirectional K+ efflux did not occur when TTX was perfused prior to and during perfusion with 5 mM ouabain. We conclude that 5 mM ouabain increases the unidirectional efflux of K+ from skeletal muscle through a barium and TTX-sensitive pathway, suggestive of voltage sensitive Na+ channels, in addition to inhibiting Na+/K+-ATPase activity.  相似文献   

10.
1. The effects of hypothyroidism (caused by surgical thyroidectomy followed by treatment for 1 month with propylthiouracil) and of hyperthyroidism [induced by subcutaneous administration of L-tri-iodothyronine (T3)] on glucose tolerance and skeletal-muscle sensitivity to insulin were examined in rats. Glucose tolerance was estimated during 2 h after subcutaneous glucose injection (1 g/kg body wt.). The sensitivity of the soleus muscle to insulin was studied in vitro in sedentary and acutely exercised animals. 2. Glucose tolerance was impaired in both hypothyroid and hyperthyroid rats in comparison with euthyroid controls. 3. In the soleus muscle, responsiveness of the rate of lactate formation to insulin was abolished in hypothyroid rats, whereas the sensitivity of the rate of glycogen synthesis to insulin was unchanged. In hyperthyroid animals, opposite changes were found, i.e. responsiveness of the rate of glycogen synthesis was inhibited and the sensitivity of the rate of lactate production did not differ from that in control sedentary rats. 4. A single bout of exercise for 30 min potentiated the stimulatory effect of insulin on lactate formation in hyperthyroid rats and on glycogen synthesis in hypothyroid animals. 5. The data suggest that thyroid hormones exert an interactive effect with insulin in skeletal muscle. This is likely to be at the post-receptor level, inhibiting the effect of insulin on glycogen synthesis and stimulating oxidative glucose utilization.  相似文献   

11.
Recently, we observed that muscle capillarization, vascular endothelial growth factor (VEGF) protein, and the VEGF mRNA response to acute exercise were lower in aged compared with young women (Croley AN, Zwetsloot KA, Westerkamp LM, Ryan NA, Pendergast aged men, Hickner RC, Pofahl WE, and Gavin TP. J Appl Physiol 99: 1875-1882, 2005). We hypothesized that similar age-related differences in muscle capillarization and VEGF expression would exist between young and aged men. Skeletal muscle biopsies were obtained from the vastus lateralis before and at 4 h after a submaximal exercise bout for the measurement of morphometry, capillarization, VEGF, KDR, and Flt-1 in seven aged (mean age 65 yr) and eight young (mean age 21 yr) sedentary men. In aged compared with young men, muscle capillary contacts and capillary-to-fiber perimeter exchange index were lower regardless of fiber type. Muscle VEGF mRNA and protein were lower in aged men both at rest and 4 h postexercise. Exercise increased muscle VEGF mRNA and protein and KDR mRNA independent of age group. There were no effects of exercise or age on muscle Flt-1 mRNA or protein or KDR protein. These results confirm that skeletal muscle capillarization and VEGF expression are lower in aged compared with young men.  相似文献   

12.
Increasing stimulation frequency has been shown to increase fatigue but not when the changes in force associated with changes in frequency have been controlled. An effect of frequency, independent of force, may be associated with the metabolic cost resulting from the additional activations. Here, two separate experiments were performed on human medial gastrocnemius muscles. The first experiment (n = 8) was designed to test the effect of the number of pulses on fatigue. The declines in force during two repetitive, 150-train stimulation protocols that produced equal initial forces, one using 80-Hz trains and the other using 100-Hz trains, were compared. Despite a difference of 600 pulses (23.5%), the protocols produced similar rates and amounts of fatigue. In the second experiment, designed to test the effect of the number of pulses on the metabolic cost of contraction, 31P-NMR spectra were collected (n = 6) during two ischemic, eight-train stimulation protocols (80- and 100-Hz) that produced comparable forces despite a difference of 320 pulses (24.8%). No differences were found in the changes in P(i) concentration, phosphocreatine concentration, and intracellular pH or in the ATP turnover produced by the two trains. These results suggest that the effect of stimulation frequency on fatigue is related to the force produced, rather than to the number of activations. In addition, within the range of frequencies tested, increasing total activations did not increase metabolic cost.  相似文献   

13.
We tested the hypothesis that blood flow is distributed among capillary networks in resting skeletal muscle in such a manner as to maintain uniform end-capillary PO2. Oxygen tension in venules draining two to five capillaries was obtained by using the phosphorescence decay methodology in rat spinotrapezius muscle. For 64 postcapillary venules among 18 networks in 10 animals, the mean PO2 was 30.1 Torr (range, 9.7-43.5 Torr) with a coefficient of variation (CV; standard deviation/mean) of 0.26. Oxygen levels of postcapillary venules within a single network or single animal, however, displayed a much smaller CV (0.064 and 0.094, respectively). By comparison, the CV of blood flow in 57 postcapillary venules of 17 networks in 9 animals was 1.27 with a mean flow of 0.011 +/- 0.014 nl/s and a range of 3.7 x 10(-4) to 6.5 x 10(-2) nl/s. Blood flow of postcapillary venules within single networks displayed a lower CV (mean, 0.51), whereas that in individual animals was 0.78. Results indicate that among venular networks, heterogeneity of oxygen tension is less than that of blood flow and within venular networks the heterogeneity of oxygen tension is much less than that of blood flow. In addition, postcapillary PO2 was independent of flow among venules in which both were measured. Results of this study may be attributable to three factors: 1) O2 diffusion between adjacent capillaries and venules, 2) structural remodeling in regions of lower PO2, and 3) O2-dependent local control mechanisms.  相似文献   

14.
This study was undertaken to quantitatively account for the metabolic disposal of lactate in skeletal muscle exposed to an elevated lactate concentration during rest and mild-intensity contractions. The gastrocnemius plantaris muscle group (GP) was isolated in situ in seven anesthetized dogs. In two experiments, the muscles were perfused with an artificial perfusate with a blood lactate concentration of ~9 mM while normal blood gas/pH status was maintained with [U-(14)C]lactate included to follow lactate metabolism. Lactate uptake and metabolic disposal were measured during two consecutive 40-min periods, during which the muscles rested or contracted at 1.25 Hz. Oxygen consumption averaged 10.1 +/- 2.0 micromol. 100 g(-1). min(-1) (2.26 +/- 0.45 ml. kg(-1). min(-1)) at rest and 143.3 +/- 16.2 micromol. 100 g(-1). min(-1) (32.1 +/- 3.63 ml. kg(-1). min(-1)) during contractions. Lactate uptake was positive during both conditions, increasing from 10.5 micromol. 100 g(-1). min(-1) at rest to 25.0 micromol. 100 g(-1). min(-1) during contractions. Oxidation and glycogen synthesis represented minor pathways for lactate disposal during rest at only 6 and 15%, respectively, of the [(14)C]lactate removed by the muscle. The majority of the [(14)C]lactate removed by the muscle at rest was recovered in the muscle extracts, suggesting that quiescent muscle serves as a site of passive storage for lactate carbon during high-lactate conditions. During contractions, oxidation was the dominant means for lactate disposal at >80% of the [(14)C]lactate removed by the muscle. These results suggest that oxidation is a limited means for lactate disposal in resting canine GP exposed to elevated lactate concentrations due to the muscle's low resting metabolic rate.  相似文献   

15.
It is well known that exercise induces lipid peroxidation in skeletal muscle and that vitamin E prevents exercise-induced lipid damage. In this study we show for the first time, an increase in protein oxidation in skeletal muscle after a single bout of exercise, related to an exercise-induced decrease in lipophilic antioxidants, and substantial protection against both resting and exercise-induced protein oxidation by supplementation with various isomers (alpha-tocopherol, alpha-tocotrienol) of vitamin E.  相似文献   

16.
The subcellular distribution of high-energy phosphates in various types of skeletal muscle of the rat was analysed by subfractionation of tissues in non-aqueous solvents. Different glycolytic and oxidative capacities were calculated from the ratio of phosphoglycerate kinase and citrate synthase activities, ranging from 25 in m. soleus to 130 in m. tensor fasciae latae. In the resting state, the subcellular contents of ATP, creatine phosphate and creatine were similar in m. soleus, m. vastus intermedius, m. gastrocnemius and m. tensor fasciae latae but, significantly, a higher extramitochondrial ADP-content was found in m. soleus. A similar observation was made in isometrically and isotonically working m. gastrocnemius. The extramitochondrial, bound ADP accounted fully for actin-binding sites in resting fast-twitch muscles, but an excess of bound ADP was found in m. soleus and working m. gastrocnemius. The amount of non-actin-bound ADP reached maximal values of approx. 1.2 nmol/mg total protein. It could not be enhanced further by prolonged isotonic stimulation or by increased isometric force development. It is suggested that non-actin-bound ADP is accounted for by actomyosin-ADP complexes generated during the contraction cycle. Binding of extramitochondrial ADP to actomyosin complexes in working muscles thus acts as a buffer for cytosolic ADP in addition to the creatine system, maintaining a high cytosolic phosphorylation potential also at increasing rates of ATP hydrolysis during muscle contraction.  相似文献   

17.
Dogs with indwelling arterial and venous catheters ran on a treadmill on a 10% or on a 15% slope at 100 m/min. Glycerol turnover ([2-3H]-glycerol) and FFA turnover ([1-14C]palmitate) were measured simultaneously. Both turnovers were greatly increased by exercise. Similar increases were produced in resting dogs by norepinephrine infusions (0.5 mug/kg-min). At rest, as well as during exercise, there was a straight-line correlation between the ratio of disappearance of each substrate and their respective plasma concentrations. Over a wide range there was a straight-line correlation between the rate of production of FFA (RaFFA) and that of glycerol (RaGLY) at rest as well as during exercise. At any given RaFFA, RaGLY was higher in the running than in the resting dog. At rest the ratio of RaFFA/RaGLY was found to give the theoretical value of 3.0 only when RaFFA was 10-15 mumol/kg-min, below this the ratio was lower and above this it was higher. During exercise the ratio was lower than at rest and at heavier load lower than at lighter work. The results suggest that in vivo a combination of partial and complete lipolysis as well as reesterification occurs. The glucose equivalent of the glycerol turnover (if 100% converted) represents (under the given experimental conditions) 14-18% of the hepatic glucose output on the 15% slope and 20-25% of it on the 10% slope.  相似文献   

18.
In the absence of external HCO3, resting membrane potentials (Vm) in extensor digitorum longus muscle were depolarized as compared to the normal Vm in the presence of HCO3. Removal of Na or Cl form the HCO3-free media induced repolarization. In muscle in HCO3 buffer at 20 degrees C, internal K, Na, and Cl activities were analyzed with liquid ion selective microelectrodes. The averages were respectively, 119.7 +/- 2.1, 6.69 +/- 0.3, and 3.41 +/- 0.06 mM. In a high proportion of cells analyzed, the equilibrium potential for Cl was negative to Vm. Removing external HCO3, decreased internal K while internal Na and Cl increased. An increase in temperature and the application of HCO3 significantly lowered internal activities of both Na and Cl. Removal of HCO3 with temperature held constant caused a rapid depolarization, an increase in internal Na and Cl, and a decrease in internal K. Furosemide (10 microM) induced a repolarization of cells that were previously depolarized in the HCO3-free state, but the drug does not decrease internal Na.  相似文献   

19.
To evaluate the effect of passive muscle shortening and lengthening (PSL) on the transcapillary exchange of glucose, lactate, and insulin in the insulin-stimulated state, microdialysis was performed in rat quadriceps muscle. Electrical pulsatile stimulation (0.1 ms, 0.3-0.6 V, 1 Hz) was performed on the sciatic nerve in one leg to induce passive tension on the quadriceps during a hyperinsulinemic-euglycemic clamp (10 mU x kg(-1) x min(-1)). In the non-insulin-stimulated (basal) state, the muscle arterial-interstitial (A-I) concentration difference of glucose was 1.6 +/- 0.3 mM (P < 0.01). During insulin infusion, it remained unaltered in resting muscle (1.3 +/- 0.3 mM) but diminished during PSL. In the basal state there was no A-I concentration difference of lactate, whereas in the insulin infusion state it increased significantly and was significantly greater in moving (2.8 +/- 0.5 mM, P < 0.01) than in resting muscle (0.7 +/- 0.4 mM). The A-I concentration difference of insulin was equal in resting and moving muscle: 86 +/- 7 and 100 +/- 8 microU/ml, respectively. Muscle blood flow estimated by use of radiolabeled microspheres increased during PSL from 17 +/- 4 to 34 +/- 6 ml x 100 g(-1) x min(-1) (P < 0.05). These results confirm that diffusion over the capillary wall is partly rate limiting for the exchange of insulin and glucose and lactate in resting muscle. PSL, in addition to insulin stimulation, increases blood flow and capillary permeability and, as a result, diminishes the A-I concentration gradient of glucose but not that of insulin or lactate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号