首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小型哺乳动物生理生态学研究与进化思想   总被引:4,自引:1,他引:3  
动物生理生态学是一门利用生理学的手段和方法研究与动物的生存和繁殖相关的生态学问题的交叉学科,
旨在阐明动物对环境适应和进化的生理机制。在近70 年的发展历程中,进化生物学的思想和理论越来越紧密地
融入到生理生态学的研究中,同时生理生态学的研究结果也在充实着进化生物学理论的发展。本文根据作者多
年的研究经历,从动物的体型和代谢特征、消化生理、生态免疫和冬眠等几个侧面,简述了小型哺乳动物生理
生态学的某些研究进展和进化思想对该领域的影响。  相似文献   

2.
Nitrogen is the mineral nutrient that often limits plant growth and development. In response to changes in nitrogen supply, plants display elaborate responses at both physiological and morphological levels to adjust their growth and development. Because higher plants consist of multiple organs with different functions and nutritional requirements, they rely on local and long-distance signalling pathways to coordinate the responses at the whole-plant level. Phytohormones have been considered as signalling substances of such pathways. Amongst phytohormones, abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling. Recent evidence has provided some insights into how nitrogen and the phytohormone signals are integrated to bring about changes in physiology and morphology. In this review, the evidence is summarized, mostly focusing on examples related to nitrogen acquisition.  相似文献   

3.
In 19th century and at the beginning 20th century, reports appeared in the field of comparative and ontogenetic physiology and the value of these methods for understanding of evolution of functions. The term "evolutionary physiology" was suggested by A. N. Severtsov in 1914. In the beginning of 30s, in the USSR, laboratories for researches in problems of evolutionary physiology were created, the results of these researches having been published. In 1956 in Leningrad, the Institute of Evolutionary Physiology was founded by L. A. Orbeli. He formulates the goals and methods of evolutionary physiology. In the following half a century, the evolutionary physiology was actively developed. The evolutionary physiology solves problems of evolution of function of functions evolution, often involving methods of adjacent sciences, including biochemistry, morphology, molecular biology.  相似文献   

4.
Biophysical limits on athermal effects of RF and microwave radiation   总被引:4,自引:0,他引:4  
Using biophysical criteria, I show that continuous radiofrequency (RF) and microwave radiation with intensity less than 10 mW/cm(2) are unlikely to affect physiology significantly through athermal mechanisms. Biological systems are fundamentally noisy on the molecular scale as a consequence of thermal agitation and are noisy macroscopically as a consequence of physiological functions and animal behavior. If electromagnetic fields are to significantly affect physiology, their direct physical effect must be greater than that from the ubiquitous endogenous noise. Using that criterion, I show that none of a set of interactions of weak fields, which I argue is nearly complete on dimensional grounds, can affect biology on the molecular scale. Moreover, I conclude that such weak fields are quite unlikely to generate significant effects in their interactions with larger biological elements such as cells. In the course of that analysis, I examine important special examples of electromagnetic interactions: "direct" interactions where biology is modified simply by the motion of charged elements generated by the electric field; resonance interactions; the effects of electrostrictive forces and induced dipole moments; and modifications of radical pair recombination probabilities. In each case, I show that it is unlikely that low intensity fields can generate significant physiological consequences.  相似文献   

5.
Environmental studies in adaptive human biology by North American anthropologists have a history of strong investigative research. From both laboratory and field work, we have gained major insights into human response to physical and social challenges. While these results were considered by most professionals to belong within evolutionary biology, in fact the intellectual structure sprang almost entirely from physiological equilibrium models. Consequently, physiological process itself was the focus. Further, most of the physiological patterns were not linked directly to important outcomes such as work output, reproductive success or survival.About 1975, American physiological anthropologists, led by Paul Baker, turned to studies of health, change and stress response. These studies were strong, but were still neither genetic nor evolutionary in intellectual structure. Evolutionary human biology was taken over by a new body of theory now called "behavior ecology", positing that selfish genes control human behavior to promote their own reproduction. This was paralleled by strong use of evolutionary theory in some areas of molecular biology. However, although physiological anthropologists have not focused on evolution, we have been developing powerful causal models that incorporate elements of physiology, morphology, physical environment and cultural behavior. In these "proximate" biocultural models, it is of little importance whether outcomes such as work or energy management are genetically based.Our future offers two major challenges. First, we must confirm causal links between specific physiological patterns and outcomes of practical importance to individuals and societies. Second, if we are to take our place in evolutionary biology, the one overarching theory of life on earth, we must understand the heritability of physiological traits, and determine whether they play a role in survival and reproduction.  相似文献   

6.
The genes rolA, B, C, and D, derived from Agrobacterium rhizogenes and naturally engineered in plants, are being investigated for a long time about their function, molecular mechanism, origin and evolution and, more recently, the perspectives they offer in plant biotechnology. Evidences point to these genes as important regulators in a wide field of plant endeavors, from hormone control to morphology, from physiological status to defense and from metabolism to signaling. However, in spite of the extant insight on rol genes mechanism and function, a comprehensive picture is still lacking. Recent data suggest that additional research could lead to significant advancement in the knowledge of the role of these genes mainly in plant-bacterium coevolution, and in the development of rol genes—based applications. Through a comprehensive critical review of literature we present a picture of rol genes functions in different plant species, focusing on the relationship between individual genes and plant physiology and metabolism. A possible scenario for their evolution is outlined.  相似文献   

7.
The major trend in evolution of living organisms is development of the central nervous system and sense organs, an increase of energy exchange, development of homoiothermy and of increasingly more complex forms of behavior, an increase in energy expenditure in connection with a rise of body activity and with development of adaptation to habitat. Such fundamental processes of evolution were and still have been subjected to numerous investigations and discussions. However, in different animals there exist different species-specific peculiarities of evolution of physiological functions, from which eventually the fundamental evolutionary processes are formed. We studied some of these specific processes by separating them into two categories. The first category is “Rise in efficiency of adaptations” in development of biological evolution. By this term we mean development of the amazingly perfect specific physiological mechanisms of adaptive character. The second category is “Weakening of the protective body reactions” under which we mean disturbances of the protective mechanisms of the body immune system, uncoordinated leukocyte movement in microvessels, lack of effective collateral blood circulation in brain and heart, etc.  相似文献   

8.
进化细胞生物学的提出及其任务   总被引:1,自引:1,他引:0  
李靖炎 《动物学研究》1989,10(4):319-326
作者提出应创建一门源于进化生物学与细胞生物学两者的交叉学科一进化细胞生物学(细胞的进化生物学)。其根本任务在于用进化的观点考察真核细胞的一切方面,从它们的起源和演化来认识它们的现在。文中列举了其具体的研究内容,并分析了其研究方法上的特点,指出在这里需要把进化生物学的综合性分析与细胞生物学的实验研究最紧密地结合起来。文中还论述了真核细胞的细胞器的“不进化”现象,指出其根本原因在于进化焦点的转移。  相似文献   

9.
Many of the altered properties of malignant cells are thought to involve alterations in cell surface functions. In order to understand these alterations it is necessary to know more about the molecular structure of the surface. Methods for analyzing surface proteins are discussed and their application to normal and transformed tissue culture cells are reviewed. A number of surface proteins are observed to be altered by transformation. Most of the alterations are reductions in amounts of particular species, although a few proteins do increase. Evidence concerning the reasons for these alterations and the possible functions of some of the molecules is reviewed. Working hypotheses arising from these data are presented and prospects for understanding the physiological changes in terms of molecular effects are discussed. Particular emphasis is placed on the idea that surface molecules are associated in specific-non-covalent complexes which are important for their functions.  相似文献   

10.
The concepts about physiological mechanisms of oxygen transport to the brain have recently changed substantially. Precise data on the capillary blood flow rate, on a substantial dispersion of corresponding values, on the influence of the capillary blood flow rate on pO2 in the capillaries and tissues have evolved. Krog's paradigm about an exclusive role of capillaries in the gas exchange between the blood and tissues amounting to almost 100 years was abandoned. All these data also changed the concepts about the development of various types of hypoxia in the brain tissues. The study of pO2 in the brain at normoxia showed that pO2 exhibits the fluctuations from 1-2 to 80-85 mm Hg. This means, in particular, that hypoxic phenomena take place in the normal healthy brain. During hypoxia the mass adhesion of leukocytes to the walls of microvessels was shown to hamper the capillary blood flow and can become one of the reasons for the death of the brain during hypoxia. The brain hypoxia is not an occasional pathologic process. It exists in an intact brain owing to physiological fluctuations of pO2 in various microregions of the brain. It occurs during various physiological states in the norm and also during various illnesses associated with the changes and disruptions in the oxygen transport. The final stage of hypoxia is the destruction of the cells. The development of this process and its particular reasons are nowadays the subject of multiple physiological and biochemical studies. Certain changes are introduced into modern ideas about the reasons for the degradation of the nervous cells upon hypoxia. The degradation of the neurons during hypoxia or anemia is postulated to be associated not only with the cell generation of active forms of oxygen (AFO), but also with the energy deficiency. This means a deficient synthesis or a complete absence of ATP in a cell during hypoxia, anemia, and ishemia.  相似文献   

11.
Emerging concepts in developmental biology, such as facilitated variation and dynamical patterning modules, address a major shortcoming of the Modern Synthesis in Biology: how genotypic variation is transduced into functional yet diverse phenotypic variation. Still, we lack a theory to explain how variation at the cellular and tissue level is coordinated into variation at the whole-organism level, especially as priority of cellular and tissue functions change over an individual's lifetime and are influenced by environmental variation. Here, we propose that interactions among a limited subset of physiological factors that we call, integrators, regulate most phenotypic variation at the organismal level. Integrators are unique among physiological factors in that they have the propensity to coordinate the expression of conserved gene modules of most types of tissues because they participate as nodes in a hierarchical network. In other words, integrator networks impose physiological epistasis, meaning that whole-organism phenotypic responses will be influenced by previous experiences, current environmental conditions, and fitness priorities as encoded by individual integrators. Below, we provide examples of how integrator networks are responsible for both profound and irreversible phenotypic changes (i.e., metamorphosis, sexual differentiation) as well as subtler, transient (e.g., pelage color, seasonal fluctuations in lymphoid and reproductive tissues) variation. The goal of this article is not to describe completely how integrator networks function, but to stimulate discussion about the role of physiology in linking genetic to phenotypic variation. To generate useful data sets for understanding integrator networks and to inform whole-organism physiology generally, we describe several useful tools including vector-field editing, response-surface regression, and experiments of life-table responses. We then close by highlighting some implications of integrator networks for conservation and biomedicine.  相似文献   

12.
"The extent of genetic and environmental variation" in the development of reproduction in sheep is illustrated by examples with particular reference to variation among breeds and to the effects of photoperiod. The interactions between genetic and environmental effects are introduced; these may be so great that genetic groups may reverse their ranking for rate of development in different environments. The "physiology of puberty" is then discussed. The difficulty of separating puberty from seasonal variation is stressed, and a possible contrast is drawn between the physiological characteristics of genetic variation and those of environmental variation in reproductive development. Finally the physiological factors associated with sterility in young females are discussed; most studies, however, have been conducted during the time of year when adult females would also be expected to be sterile, so that conclusions are difficult and a "missing link" cannot be identified.  相似文献   

13.
Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.  相似文献   

14.
克隆植物的水分生理整合及其生态效应   总被引:11,自引:0,他引:11  
水分生理整合是克隆植物生理整合过程中非常重要的一部分,是克隆植物生长发育和生态适应过程中的重要机制之一。本文主要从理论上对克隆植物水分生理整合的存在性、方向性、整合的程度、范围及其与克隆植物的功能分工、表型可塑性和觅养行为、风险分摊等行为表现的关系进行了深入分析,并对迄今有关克隆植物水分整合的最新研究进展和研究方法进行了系统总结和评述。提出克隆植物的水分生理整合包括水平和垂直两个方向,而水力提降为垂直方向的水分生理整合提供了一个重要途径。认为在今后,应加强对克隆植物水分生理整合的精确定量化研究,同时,应运用生态学、生理学、生物化学及分子生物学等方法,综合深入地研究克隆植物水分整合的机理。  相似文献   

15.
The study of muscle physiology has undergone many changes over the past 25 years and has moved from purely physiological studies to those intimately intertwined with molecular and cell biological questions. To ask these questions, it is necessary to be able to transfer genetic reagents to cells both in culture and, ultimately, in living animals. Over the past 10 years, a number of different chemical and physical approaches have been developed to transfect living skeletal, smooth, and cardiac muscle systems with varying success and efficiency. This review provides a survey of these methods and describes some more recent developments in the field of in vivo gene transfer to these various muscle types. Both gene delivery for overexpression of desired gene products and delivery of nucleic acids for downregulation of specific genes and their products are discussed to aid the physiologist, cell biologist, and molecular biologist in their studies on whole animal biology. electroporation; liposomes; plasmids; transfection; gene expression  相似文献   

16.
Monitoring and control of the physiological state of cell cultures   总被引:2,自引:0,他引:2  
Advances in bioprocess engineering depends ultimately on the level of understanding and control of the physiological state of the cell population. Process efficiency is strongly influenced by changes in the cellular state which should be monitored, interpreted, and, if possible, properly manipulated. In most control systems this function is not explicitly considered, which hampers process development and optimization. Conventional control logic is based on direct mapping of the growth environment into process efficiency, thereby bypassing the cell state as an intermediate control objective. Today, this limitation is well realized, and explicit monitoring and control of cellular physiology are considered to be among the most challenging tasks of modern bioprocess engineering. We present here a generic methodology for the design of systems capable of performing these advanced monitoring and control functions.The term "physiological state" is quantified by a vector composed of several process variables that convey significant information about cellular state. These variables can be selected among different classes, including specific metabolic rates, metabolic rate ratios, degees of limitation, and others. The real-time monitoring of many of these is possible using commercial sensors. The definition and calculation of representative sets of physiological state variables is demonstrated with examples from several fermentor cultures: recombinant Escherichia coli for phenylalanine production, bioluminescent E. coli (harboring lux genes driven by a heat shock protein promoter) for detection of environmental pollutants, plant cell culture of Perilla frutescensfor anthocyanin production, and perfusion cultures of recombinant mammalian cells (NS0 and CHO) for therapeutic protein production.If the physiological state vector is on-line calculated, the fermentation process can be described by its trajectory in a space defined by the vector components. Then, the goal of the control system is to maintain the physiological state of the cell as close as possible to the trajectory, providing maximum efficiency. A control structure meant to perform this function is proposed, along with the mechanism for its design. In contrast to conventional systems which work in a closed loop in respect to the cell environment, this scheme operates in a closed loop in respect to the cell state. The discussed control concept has been successfully applied to the recombinant phenylalanine production, resulting in physiologically consistent operation, total computer control, and high process efficiency. Initial results from the application of the method to perfusion mammalian cell cultures are also presented. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
The environments in which animals have evolved and live have profound effects on all aspects of their biology. Predictable rhythmic changes in the physical environment are arguably among the most important forces shaping the evolution of behavior and physiology of animals, and to anticipate and prepare for these predictable changes, animals have evolved biological clocks. Unpredictable changes in the physical environment have important impacts on animal biology as well. The ability of animals to cope with and survive unpredictable perturbations depends on phenotypic plasticity and/or microevolution. From the time metazoans first evolved from their protistan ancestors they have lived in close association with a diverse array of microbes that have influenced, in some way, all aspects of the evolution of animal structure, function and behavior. Yet, few studies have addressed whether daily or seasonal rhythms may affect, or be affected by, an animal’s microbial symbionts. This survey highlights how biologists interested in the ecological and evolutionary physiology of animals whose lifestyles are influenced by environmental cycles may benefit from considering whether symbiotic microbes have shaped the features they study.  相似文献   

18.
Adding a causal, mechanistic dimension to the study of character evolution will increase the strength of inferences regarding the evolutionary history of characters and their adaptive consequences. This approach has the advantage of illuminating mechanism and testing evolutionary hypotheses rigorously. We consider the advantages of combining mechanistic and historical biology in the study of behavior, physiology, and development. We present six examples to illustrate the advantages: (1) preexisting biases in sound perception in frogs; (2) preexisting biases in visual cues in swordtailfishes; (3) exploitation of prey location behavior for attraction of mates in water mites; (4) heterospecific mating in asexual molly fishes; (5) developmental foundation of morphological diversification in amphibian digits; and (6) locomotor performance at low temperature and the evolution of nocturnality in geckos. In each of these examples, the dominant role of history, combined with organismal integration, makes ignoring history a risky proposition.  相似文献   

19.
Blood cells are subjected to various mechanical forces; including pressure, flow, shear force, gravity, and forces acting against them with varying stiffness (eg. blood vessel wall). Scientists have discovered that these forces have profound effects on cellular growth, differentiation, secretion of cytokines, cell death, and migration. These processes are called mechanotransduction, a conversion of mechanical forces to biochemical signals. In this article the author reviews biophysical forces that affect biological functions of blood cells and their responses in normal physiology and pathophysiology. Although input (forces) and output (cellular responses) have been well studied by utilizing recently developed various force-generating devices, the molecular mechanism of mechanotransudction is still a mystery. This is because reconstructing molecular interaction in the presence of mechanical forces in vitro is highly challenging and until now the molecular dynamics involved in structural changes caused by these forces are largely unknown. Nevertheless, the author has reviewed a few examples of potential structural effects on the molecular mechanism of mechanotransduction.  相似文献   

20.
Sleep exerts major effects on most fundamental homeostatic mechanisms. Current data suggest, however, that students of physiology and medicine typically receive little or no formal teaching in sleep. Because sleep takes up a significant component of our life span, it is proposed that current teaching in systems and integrative physiology is not representative if it is confined to functions describing wakefulness only. We propose that sleep can be readily integrated into various components of physiology and medical curricula simply by emphasizing how commonly taught physiological processes are importantly affected by sleep mechanisms. In our experience, this approach can be used to reinforce basic physiological principles while simultaneously introducing sleep physiology into the students' training. We find that students have a general and inherent interest in sleep and related clinical disorders, and this proves useful as an effective means to teach the material. In this paper, examples of how sleep influences motor control and the respiratory system will illustrate these points. These considerations also highlight some important gaps in traditional teaching of respiratory physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号