首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of lysosomal cystine transport was studied using cystine dimethyl ester-loaded lysosomes isolated from human diploid fibroblasts. Net efflux from normal fibroblast lysosomes was compared to that from lysosomes of cystinotic fibroblasts, which contain an inherited mutation decreasing lysosomal cystine transport. This exodus of cystine from normal fibroblast lysosomes was greater than from cystinotic fibroblast lysosomes. When lysosomes were incubated with both 5 mM MgCl2 and 2 mM ATP (Mg/ATP), the amount of lysosomal cystine lost from normal lysosomes doubled, but the amount of cystine lost from cystinotic lysosomes remained small. This effect of Mg/ATP on cystine loss from lysosomes isolated from normal fibroblasts was abolished when either carbonyl cyanide m-chlorophenylhydrazone or N-ethylmaleimide was present, suggesting that the effect of Mg/ATP was mediated by the action of a lysosomal proton-translocating ATPase. Addition of KCl, RbCl, or NaCl to normal lysosomes caused smaller increases in cystine exodus. A variety of experimental conditions altered lysosomal pH, membrane potential, and the cystine lost from normal fibroblast lysosomes. These same experimental conditions produced similar alterations in the lysosomal pH and membrane potential of cystinotic fibroblast lysosomes without a comparable alteration in cystine loss. These results have led us to propose a model in which the transport of cystine out of the normal lysosome is regulated by both the lysosomal membrane potential gradient and the transmembrane pH gradient.  相似文献   

2.
Lysosomes were purified from the livers of rats which had been treated with Triton WR-1339. The ATPase activity of these lysosomes was stimulated by preincubation with NaCl or KCl, conditions which diminish the proton gradient due to Donnan equilibrium. Subsequent to this preincubation measurements of methylamine uptake by lysosomes showed an ATP-dependent enhancement. Simultaneous measurements of the internal volumes of lysosomes confirmed that ATP-dependent methylamine uptake is due to acidification of lysosomes by 0.3 to 0.5 pH units. Because the conditions which stimulated ATP-dependent methylamine uptake also stimulated the ATPase activity it is concluded that acidification of lysosomes requires an ATPase which functions as a proton pump.  相似文献   

3.
Polyamines stimulate lysosomal cystine transport   总被引:1,自引:0,他引:1  
Lysosomal cystine transport is a carrier-dependent process that, in isolated lysosomes, is stimulated by proton gradients, membrane potential, and millimolar concentrations of divalent cations. The importance of these regulatory factors in vivo is not well established. Polyamines were found to stimulate cystine transport in Percoll gradient purified rat liver lysosomes with spermidine greater than putrescine = cadaverine greater than spermine in order of effectiveness. Maximal stimulation was achieved with 500 microM spermidine. The effects of optimal concentrations of polyamines and divalent cations on cystine transport were not additive. Spermidine stimulated cystine efflux from lysosomes of cultured human diploid fibroblasts, but had no effect on lysosomes of cystinotic fibroblasts which have defective cystine transport. Spermidine did not accumulate within lysosomes in exchange for cystine, had no effect on lysosomal pH, had only slight effects on the lysosomal membrane potential, and had little effect on either methionine or tyrosine efflux. Polyamines are cellular cytoplasmic components that, in physiologic concentrations, stimulate lysosomal cystine transport.  相似文献   

4.
Normal leucocyte lysosome-rich granular fractions exhibited counter-transport of cystine, confirming that cystine transport across the lysosomal membrane is carrier-mediated. The trans-activation of cystine transport was temperature-dependent but relatively independent of the external Na+ or K+ concentration in phosphate buffer. Counter-transport, measured as uptake of exogenous [3H]cystine, increased with increasing intralysosomal cystine content up to approx. 3 nmol of half-cystine/unit of hexosaminidase activity. The amount of [3H]cystine entering lysosomes loaded with unlabelled cystine decreased when unlabelled cystine was added to the extralysosomal medium. Lysosomal cystine counter-transport was stereospecific for the L-isomer. Cystathionine, cystamine and cysteamine-cysteine mixed disulphide gave evidence of sharing the lysosomal cystine-transport system, although at lower activity than cystine. Other tested amino acids, including arginine, glutamate and homocystine, were inactive in this system. Nine leucocyte lysosome-rich preparations from eight different cystinotic patients displayed virtually no counter-transport of cystine, conclusively establishing that a carrier-mediated system for cystine transport is dysfunctional in cystinotic lysosomes.  相似文献   

5.
Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.  相似文献   

6.
Membrane vesicles were isolated from purified liver lysosomes of rats treated with Triton WR-1339. In order to preserve ATP-dependent acidification activity, proteolysis of membranes was minimized by adding protease inhibitors and by centrifuging to form dilute bands of vesicles rather than highly concentrated pellets. The membrane vesicle fraction represented about 20% of the total lysosomal protein, 80% of the ATPase activity, and 3% of the solute proteins as marked by N-acetylglucosaminidase. About one-half of the membranes were oriented right side out. The space unavailable to [14C]sucrose corresponded to 3 microliters/mg of membrane protein which indicates that the membranes form vesicles about one-tenth the size of lysosomes. Uptake of either [14C]methylamine or [14C]chloroquine by lysosomal membrane vesicles was ATP-dependent, indicating acidification of the intravesicle space. The acidification activity was inhibited when either 1.5 microM carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, 100 microM dicyclohexylcarbodiimide, or millimolar concentrations of such permeant weak bases as ammonium sulfate and dansyl cadaverine were added. Acidification of lysosomal vesicles by ATP occurred electroneutrally. This acidification activity was not dependent on added salts but was inhibited by the anion transport inhibitors pyridoxal phosphate and diisothiocyanostilbene disulfonic acid, thus suggesting co-transport of protons and anions. Results which indicate that phosphate is the transported anion included (a) ATP-dependent uptake of [32P]phosphate by lysosomal membrane vesicles and (b) stimulation of ATP-dependent acidification of these vesicles by added phosphate. These observations provide further evidence that maintenance of the acid intralysosomal pH necessary for activation of lysosomal hydrolases is due to an ATP-driven proton pump located in the lysosomal membrane.  相似文献   

7.
Cystine efflux from isolated rat liver lysosomes was enhanced by concentrations of stearylamine that were above the critical micellar concentration. Lysosomal latency, pH, and activity of the proton-translocating ATPase were largely unaffected under controlled experimental conditions. Loss of lysosomal latency was observed at higher stearylamine to protein ratios consistent with a detergent-like mechanism of action. Partially purified cultured fibroblast lysosomes with either defective cystine or sialic acid transport lost their stored material upon exposure to stearylamine. Concentrations of stearylamine which were effective for lysosomal efflux were highly toxic for cultured fibroblasts, thus limiting its use. Under specific conditions, stearylamine apparently selectively permeabilizes the lysosomal membrane. A similar acting, but less toxic agent may be of use in the treatment of lysosomal transport disorders.  相似文献   

8.
Inhibitors of lysosomal acidification (4,4'-di-isothiocyanostilbene-2,2'-disulphonate, NN'-dicyclohexylcarbodi-imide, carbonyl cyanide m-chlorophenylhydrazone, NH4Cl and methylamine hydrochloride) did not alter cystine egress or countertransport in polymorphonuclear-leucocyte lysosome-rich granular fractions at pH 7.0. Together, 2 mM-MgCl2/MgATP and 90 mM-KCl stimulated cystine egress 2-fold, but this effect also was not influenced by inhibitors of ATP-dependent lysosomal acidification. MgCl2/MgATP stimulated cystine transport at pH 5.5, but the effect also occurred with MgCl2, MgSO4 or MnCl2 alone, was prevented by chelation, and was not seen with NaATP; therefore, it was considered a bivalent-cation, not an ATP, effect. Proton-pump-mediated acidification of lysosomes does not appear to be required for cystine transport in normal polymorphonuclear-leucocyte granular fractions, as reported for lymphoblast lysosomes.  相似文献   

9.
The discovery of a trans-stimulation property associated with lysine exodus from lysosomes of human fibroblasts has enabled us to characterize a system mediating the transport of cationic amino acids across the lysosomal membrane of human fibroblasts. The cationic amino acids arginine, lysine, ornithine, diaminobutyrate, histidine, 2-aminoethylcysteine, and the mixed disulfide of cysteine and cysteamine all caused trans-stimulation of the exodus of radiolabeled lysine from the lysosomal fraction of human fibroblasts at pH 6.5. In contrast, neutral and acidic amino acids did not affect the rate of lysine exodus. trans-Stimulation of lysine exodus was observed over the pH range from 5.5 to 7.6, was specific for the L-isomer of the cationic amino acid, and was intolerant to methylation of the alpha-amino group of the amino acid. The lysosomotropic amine, chloroquine, greatly retarded lysine exodus, whereas the presence of sodium ion was without effect. The specificity and lack of Na+ dependence of this lysosomal transport system is similar to that of System y+ present on the plasma membrane of human fibroblasts. In addition, we find cystine exodus from the lysosomal fraction of cystinotic human fibroblasts to be greatly retarded as compared to that of normal human fibroblasts with half-times of exodus similar to those reported for the lysosomes of cystinotic and normal human leukocytes (Gahl, W. A., Tietze, F., Bashan, N., Steinherz, R., and Schulman, J. D. (1982) J. Biol. Chem. 257, 9570-9575). In contrast, normal and cystinotic human fibroblasts did not show any differences with regard to lysine efflux or its trans-stimulation by cationic amino acids. An important mechanism by which cysteamine treatment of cystinosis allows cystine escape from lysosomes may be the ability of the mixed disulfide of cysteine and cysteamine formed by sulfhydryl-disulfide exchange to migrate by this newly discovered system mediating cationic amino acid transport.  相似文献   

10.
Human skin fibroblast cells derived from a juvenile patient with nephropathic cystinosis were transformed by simian virus 40. Transformed cell clones were isolated and established in tissue culture. In comparison to the parental cystinotic cells, the newly isolated, transformed cell clones had a higher plating efficiency, a modal chromosome number of 68, grew in soft agar, and showed a nuclear immunofluorescence typical for SV 40-specific tumor (T) antigen. The content of intracellular, unbound cystine in the transformed cell clone was of the same level (6.1 nmol 1/2 cystine/mg protein) as in the parental cystinotic cells (7.4 nmol). Control cells (SV 80 and WI-38) contained normal levels of cystine (0.31 and 0.47 nmol 1/2 cystine/mg protein). The growth characteristics make the transformed cystinotic cell clone suitable for large scale preparation of cellular constituents, i.e. lysosomes which seem to be affected in cystinotic patients.  相似文献   

11.
Cystinotic fibroblasts transferred from 37 degrees C to 28 degrees C accumulated additional cystine over the period from 4 to 7 days of incubation at 28 degrees C, after which the additional cystine was lost; warming (to 37 degrees C) of cells with elevated cystine stores led to rapid cystine loss. These results, taken together with previously published data showing cystine release from cystinotic fibroblasts incubated at above-normal temperature, are interpreted as indicating the presence in the cystinotic fibroblast lysosome membrane of a cystine-porter whose efficacy is increased by an increase in membrane fluidity. This porter may be the residual activity of the cystine porter that is known to be deficient in cystinosis, or it may be a second as yet unrecognized porter. It is further proposed that this porter is responsible for the presumed efflux of cystine from cystinotic lysosomes.  相似文献   

12.
Cystinotic lysosome-rich leucocyte granular fractions, loaded with [35S]cystine, were exposed to different cystine-depleting agents. During a 30 min incubation at 37 degrees C, untreated cystinotic granular fractions lost negligible [35S]cystine when corrected for lysosome rupture. Granular fractions exposed to 0.1 mM-cysteamine lost 64% of their initial cystine, and hexosaminidase activity was decreased by 10%. This was accompanied by the formation of high concentrations of [35S]cysteine-cysteamine mixed disulphide within the granular-fraction pellet, and, in the presence of N-ethylmaleimide, increasing amounts of [35S]cysteine-N-ethylmaleimide adduct outside the granular fraction. In separate experiments, [35S]cystine exited cystinotic leucocyte lysosomes at a negligible rate (half-times 199 and 293 min), but [35S]cysteine-cysteamine mixed disulphide exhibited substantial egress (half-times 66 and 88 min) and was recovered intact outside the granular-fraction pellet. We conclude that cysteamine depletes lysosomes of cystine by participating in a thiol-disulphide interchange reaction to produce cysteine and cysteine-cysteamine mixed disulphide, both of which traverse the cystinotic leucocyte lysosomal membrane.  相似文献   

13.
Highly purified peroxisomal fractions from rat liver contain ATPase activity (18.8 +/- 0.1 nmol/min per mg, n = 6). This activity is about 2% of that found in purified mitochondrial fractions. Measurement of marker enzyme activities and immunoblotting of the peroxisomal fraction with an antiserum raised against the beta-subunit of mitochondrial ATPase indicates that the ATPase activity in the peroxisomal fractions can not be ascribed to contamination with mitochondria or other subcellular organelles. From the sensitivity of the ATPase present in the peroxisomal fraction towards a variety of ATPase inhibitors, we conclude that it displays both V-type and F-type features and is distinguishable from both the mitochondrial F1F0-ATPase and the lysosomal V-type ATPase.  相似文献   

14.
Glutathione metabolism in normal and cystinotic fibroblasts   总被引:1,自引:0,他引:1  
Intracellular concentrations of glutathione and activities of the enzymes gamma-glutamylcysteine synthetase, glutathione synthetase, and gamma-glutamyl transpeptidase were measured in confluent cultured human fibroblasts cell lines from 14 normal cell lines and four cystinotic cell lines. gamma-Glutamyl transpeptidase had a wide range of variability while the glutathione synthetic enzymes, gamma-glutamylcysteine synthetase and glutathione synthetase, had narrower variations and also exhibited no apparent relationship to glutathione content. No differences in the activities of these enzymes were found between normal and cystinotic cells in confluent cell cultures. The activities of the above enzymes and the cell number and content of glutathione, cystine, DNA, and total protein in two normal and two cystinotic fibroblast cell lines were measured during growth. The following growth-dependency patterns were observed: (1) gamma-glutamylcysteine synthetase activity increased markedly in lag and early log phases in both normal and cystinotic cells and decreased rapidly to low confluent levels thereafter. (2) gamma-Glutamyl transpeptidase showed the same wide range of activity noted at confluency but activities decreased in the log phase of growth, a pattern also seen in cystinotic cells. (3) Glutathione synthetase activity remained relatively constant during growth of normal cells but exhibited a peak of activity during lag and early growth of cystinotic cells. (4) Comparative glutathione levels of normal and cystinotic cells were not significantly different and exhibited similar fluctuations with time. (5) The cystine content of normal and cystinotic cells unexpectedly rose to high levels in the lag phase, then decreased to 0.1 nmol 1/2 cystine/mg protein in normal cells and to 0.3 to 1.2 nmol 1/2 cystine/mg protein in cystinotic cells during the log phase. As confluency was approached, normal cell cystine remained at low levels while cystinotic cell cystine rose to characteristically high levels of 50- to 100-fold greater than normal cells at late confluency. These studies extend our understanding of the regulation of glutathione and cystine content in cultured fibroblasts and suggest that glutathione content is closely controlled throughout the cell cycle in the face of varying activities of its anabolic and catabolic enzymes.  相似文献   

15.
Normal rat liver lysosomal membranes in the form of membrane vesicles have been purified using Percoll density gradient centrifugation. Lysosomes (density = 1.111) were purified approximately 63 +/- 12-fold (mean +/- standard deviation, n = 5) using a gradient of Percoll made isotonic with sucrose and buffered to pH 7.0. These lysosomes were then exposed to 10 mM methionine methyl ester, pH 7.0, the uptake of which resulted in swelling and breakage of the lysosomes with subsequent vesicle formation. These vesicles (density = 1.056) were further separated from residual mitochondrial and plasma membrane enzyme activities using a second Percoll density gradient. Marker enzyme analysis and electron microscopy indicated that the lysosomal membranes were essentially free of both beta-hexosaminidase, a soluble lysosomal enzyme, and contaminating organelles. The specific activity of lysosomal ATPase in the lysosomal membranes was fourfold greater than in the intact lysosomes.  相似文献   

16.
(CaMg)ATPase [(Ca2+ + Mg2+)-dependent ATPase] was partially purified from a microsomal fraction of the smooth muscle of the pig stomach (antrum). Membranes were solubilized with deoxycholate, followed by removal of the detergent by dialysis. The purified (CaMg)ATPase has a specific activity (at 37 degrees C) of 157 +/- 12.1 (7)nmol.min-1.mg-1 of protein, and it is stimulated by calmodulin to 255 +/- 20.9 (7)nmol.min.mg-1. This purification of the (CaMg)ATPase resulted in an increase of the specific activity by approx. 18-fold and in a recovery of the total enzyme activity of 55% compared with the microsomal fraction. The partially purified (CaMg)ATPase still contains some Mg2+-and (Na+ + K+)-dependent ATPase activities, but their specific activities are increased relatively less than that of the (CaMg)ATPase. The ratios of the (CaMg)ATPase to Mg2+- and (Na+ + K+)-dependent ATPase activities increase from respectively 0.14 and 0.81 in the crude microsomal fraction to 1.39 and 9.07 in the purified preparation. During removal of the deoxycholate by dialysis, vesicles were reconstituted which were capable of ATP-dependent Ca2+ transport.  相似文献   

17.
Ca2+ transport across mammary-gland Golgi membranes was measured after centrifugation of the membrane vesicles through silicone oil. In the presence of 2.3 microM free Ca2+ the vesicles accumulated 5.8 nmol of Ca2+/mg of protein without added ATP, and this uptake was complete within 0.5 min. In the presence of 1 mM-ATP, Ca2+ was accumulated at a linear rate for 10 min after the precipitation of intravesicular Ca2+ with 10 mM-potassium oxalate. ATP-dependent Ca2+ uptake exhibited a Km of 0.14 microM for Ca2+ and a Vmax. of 3.1 nmol of Ca2+/min per mg of protein. Ca2+-dependent ATP hydrolysis exhibited a Km of 0.16 microM for Ca2+ and a Vmax. of 10.1 nmol of Pi/min per mg of protein. The stoichiometry between ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase varied between 0.3 and 0.7 over the range 0.03-8.6 microM-Ca2+. Both Ca2+ uptake and Ca2+-stimulated ATPase were strongly inhibited by orthovanadate, which suggests that the major mechanism by which Golgi vesicles accumulate Ca2+ is through the action of the Ca2+-stimulated ATPase. However, Ca2+ uptake was also decreased by the protonophore CCCP (carbonyl cyanide m-chlorophenylhydrazone), indicating that it may occur by other mechanisms too. The effect of CCCP may be related to the existence of transmembrane pH gradients (delta pH) in these vesicles: the addition of 30 microM-CCCP reduced delta pH from a control value of 1.06 to 0.73 pH unit. Golgi vesicles also possess a Ca2+-efflux pathway which operated at an initial rate of 0.5-0.57 nmol/min per mg of protein.  相似文献   

18.
Lysosomes (tritosomes) were purified from the livers of rats injected with Triton WR 1339. The lysosomes developed an Mg2+-ATP-dependent pH gradient as measured by Acridine orange accumulation. H+ transport was supported by chloride, but not sulfate, and was independent of the cation used. H+ transport and Mg2+-stimulated ATPase was inhibited by diethylstilbesterol (K0.5 = 2 microM). N-Ethylmaleimide inhibited H+ transport (K0.5 = 30 microM). At low concentrations of N-ethylmaleimide, ATP partially protected H+ transport from inhibition with N-ethylmaleimide. Photolysis with 8-azido-ATP inhibited H+ transport and Mg2+-stimulated ATPase activity. Under these same conditions, 8-azido-[alpha-32P]ATP reacted with a number of polypeptides of the intact lysosome and lysosomal membranes. Pump-dependent potentials were measured using the fluorescent potential-sensitive dye, DiSC3(5) (3,3'-dipropylthiocarbocyanine) and ATP-dependent potential generation was inhibited by diethylstilbesterol. Chloride, but not sulfate reduced the magnitude of the ATP-dependent membrane potential, as measured using merocyanine 540. The chloride conductance, independent of ATP, was of sufficient magnitude to generate a H+ gradient driven by external chloride in the presence of tetrachlorosalicylanilide. In Cl- free media, ATP-dependent H+ transport was restored to control levels by outwardly directed K+ gradients in the presence of valinomycin. The role of cell Cl- is to provide the necessary conductance for supporting lysosomal acidification by the electrogenic proton pump.  相似文献   

19.
Y X Wang  L B Shi  A S Verkman 《Biochemistry》1991,30(11):2888-2894
Functional water channels are retrieved by endocytosis from the apical membrane of toad bladder granular cells in response to vasopressin [Shi, L.-B., & Verkman, A.S. (1989) J. Gen. Physiol. 94, 1101-1115]. To examine whether endocytic vesicles which contain the vasopressin-sensitive water channel fuse with acidic vesicles for entry into a lysosomal pathway, ATP-dependent acidification and osmotic water permeability were measured in endosomes from control bladders and bladders treated with vasopressin (VP) and/or phorbol myristate acetate (PMA). Endosomes were labeled with the fluid-phase markers 6-carboxyfluorescein or fluorescein-dextran. Osmotic water permeability (Pf) was measured by stopped-flow fluorescence quenching and proton ATPase activity by ATP-dependent, N-ethylmaleimide-inhibitable acidification. In a microsomal pellet, Pf was low (less than 0.002 cm/s, 20 degrees C) in labeled endocytic vesicles from control bladders but high (0.05-0.1 cm/s) in a subpopulation (50-70%) of vesicles from VP- and PMA-treated bladders. Following ATP addition, the average drop in pH was 0.1 (control), 0.3 (VP), and 0.2 (PMA) unit. Measurement of pH in individual endocytic vesicles by quantitative image analysis showed that less than 20% of vesicles from VP-treated bladders acidified by greater than 0.5 pH unit. To examine whether water channels and proton pumps were present in the same endocytic vesicles, the pH of endosomes with high and low water permeability was measured from the effect of ATP on the amplitude of the fluorescence quenching signal in response to an osmotic gradient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In this paper we report that the activity of cholesterol sulphate sulphohydrolase (CHS-ase) is associated with the lysosomal membranes. The procedure of purification of CHS-ase from human placenta lysosomes was elaborated. The purified enzyme is highly specific to cholesterol sulphate (specific activity 2126.60+/-940.90 nmol min(-1) mg protein(-1)) and acts optimally at pH 3.4. The K(M) value for the hydrolysis of cholesterol sulphate is 3.6+/-0.95 x 10(-5)mol/l. The isoelectric point (pI) has the value 5.7, molecular weight estimated by SDS-PAGE electrophoresis is 38 kDa. The described enzyme may be involved in a regulation of cholesterol and cholesterol sulphate levels in the lysosomal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号