首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For detection of biological events in vitro, sensors using hyperpolarized (129)Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell surface, and endocytosis further increases this density. The study of these biosensors with K562 cell suspensions via fluorescence microscopy and (129)Xe NMR indicates a strong interaction, as well as interesting features such as the capacity of xenon to enter the cryptophane even when the biosensor is endocytosed, while keeping a high level of polarization. Despite a lack of specificity for transferrin receptors, undoubtedly due to the hydrophobic character of the cryptophane moiety that attracts the biosensor into the cell membrane, these biosensors allow the first in-cell probing of biological events using hyperpolarized xenon.  相似文献   

2.
Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interactions with proteins. A method for detecting specific xenon-binding interactions by analysis of 129Xe chemical shift data is illustrated using the maltose binding protein (MBP) from Escherichia coli as an example. The crystal structure of MBP in the presence of 8atm of xenon confirms the binding site determined from NMR data. Changes in the structure of the xenon-binding cavity upon the binding of maltose by the protein can account for the sensitivity of the 129Xe chemical shift to MBP conformation. 129Xe NMR data for xenon in solution with a number of cavity containing phage T4 lysozyme mutants show that xenon can report on cavity structure. In particular, a correlation exists between cavity size and the binding-induced 129Xe chemical shift. Further applications of 129Xe NMR to biochemical assays, including the screening of proteins for xenon binding for crystallography are considered.  相似文献   

3.
NMR studies with hyperpolarized xenon as functionalized sensor or contrast agent recently made notable progress in developing a new approach for detecting molecular markers and parameters of biomedical interest. Combining spin polarization enhancement with novel indirect detection schemes easily enables a 107-fold signal gain, thus having promising potential to solve the NMR sensitivity problem in many applications. Though an inert element, 129Xe has exquisite NMR properties to sense molecular environments. This review summarizes recent developments in the production of hyperpolarized xenon and the design and detection schemes of xenon biosensors.  相似文献   

4.

Background

Hyperpolarized (HP) 129Xe magnetic resonance imaging (MRI) permits high resolution, regional visualization of pulmonary ventilation. Additionally, its reasonably high solubility (>10%) and large chemical shift range (>200 ppm) in tissues allow HP 129Xe to serve as a regional probe of pulmonary perfusion and gas transport, when introduced directly into the vasculature. In earlier work, vascular delivery was accomplished in rats by first dissolving HP 129Xe in a biologically compatible carrier solution, injecting the solution into the vasculature, and then detecting HP 129Xe as it emerged into the alveolar airspaces. Although easily implemented, this approach was constrained by the tolerable injection volume and the duration of the HP 129Xe signal.

Methods and Principal Findings

Here, we overcome the volume and temporal constraints imposed by injection, by using hydrophobic, microporous, gas-exchange membranes to directly and continuously infuse 129Xe into the arterial blood of live rats with an extracorporeal (EC) circuit. The resulting gas-phase 129Xe signal is sufficient to generate diffusive gas exchange- and pulmonary perfusion-dependent, 3D MR images with a nominal resolution of 2×2×2 mm3. We also show that the 129Xe signal dynamics during EC infusion are well described by an analytical model that incorporates both mass transport into the blood and longitudinal relaxation.

Conclusions

Extracorporeal infusion of HP 129Xe enables rapid, 3D MR imaging of rat lungs and, when combined with ventilation imaging, will permit spatially resolved studies of the ventilation-perfusion ratio in small animals. Moreover, EC infusion should allow 129Xe to be delivered elsewhere in the body and make possible functional and molecular imaging approaches that are currently not feasible using inhaled HP 129Xe.  相似文献   

5.
In 1,1,2,2‐tetrachloroethane‐d2, the 129Xe NMR spectrum of the Xe@cryptophane‐223 complex bearing seven acetate groups (Xe@ 1 complex) shows an unusually broad signal compared with that of its congeners (Chapellet, LL. et al. J. Org. Chem. 2015 ;80:6143–6151). To interpret this unexpected behaviour, a 1H NMR analysis and a thorough study of the chiroptical properties of 1 as a function of the nature of the solvent have been performed. The 1H NMR spectra of 1 reveal that a self‐encapsulation phenomenon takes place in DMSO‐d6 and 1,1,2,2‐tetrachloroethane‐d2 solvents. Thanks to the separation of the two enantiomers of 1 by HPLC on chiral stationary phase, the two enantiomers of 1 have been studied in detail by polarimetry, electronic (ECD), and vibrational (VCD) circular dichroism spectroscopies. Except for ECD spectroscopy, these chiroptical techniques reveal spectroscopic changes as a function of the nature of the solvent. For instance, in DMSO and 1,1,2,2‐tetrachloroethane, in which the self‐encapsulation phenomenon takes place, the sign of the specific optical rotation of [CD(?)254]‐ 1 and [CD(+)254]‐ 1 is changed. These results have then been compared with those obtained with cryptophane‐223 bearing only one acetate group on the propylenedioxy linker (compound 2 ) and with cryptophane‐223 bearing six acetate groups (compound 3 ). A self‐encapsulation phenomenon is also observed with compound 2 . Finally, compounds 2 and 3 show different chiroptical properties compared with those obtained with the two enantiomers of compound 1 .  相似文献   

6.
通过激光增强核自旋极化技术,可以得到很高的非热平衡极化度和长驰豫时间的惰性气体(129Xe和3He),其作为核磁共振探针,具有广泛的生物医学应用价值,该文探讨了激光增强129Xe和3He核自旋极化的磁共振成像和波谱学原理,介绍了激光极化惰性气体的设备和方法,以及极化气体的收集贮存和输入过程,最后对氢核及极化核的磁共振成像,极化气体129Xe和3He的应用进行了比较性总结。  相似文献   

7.
The chemical shift of the (129)Xe NMR signal has been shown to be extremely sensitive to the local environment around the atom and has been used to follow processes such as ligand binding by bacterial periplasmic binding proteins. Here we show that the (129)Xe shift can sense more subtle changes: magnesium binding, BeF(3)(-) activation, and peptide binding by the Escherichia coli chemotaxis Y protein. (1)H-(15)N correlation spectroscopy and X-ray crystallography were used to identify two xenon-binding cavities in CheY that are primarily responsible for the shift changes. One site is near the active site, and the other is near the peptide binding site.  相似文献   

8.
Hyperpolarized 129Xe was dissolved in a lipid emulsion and administered to anaesthetized rats by manual injections into the carotid (approximately 1-1.5 mL in a maximum time of 30 s). During injection, 129Xe NMR brain spectra at 2.35 T were recorded over 51 s, with a repetition time of 253 ms. Two peaks assigned to dissolved 129Xe were observed (the larger at 194 +/- 1 ppm assigned to intravascular xenon and the smaller at 199 +/- 1 ppm to xenon dissolved in the brain tissue). Their kinetics revealed a rapid intensity increase, followed by a plateau (approximately 15 s duration) and then a decrease over 5 s. This behaviour was attributed to combined influences of the T1 relaxation of the tracer, of radiofrequency sampling, and of the tracer perfusion rate in rat brain. Similar kinetics were observed in experiments carried out on a simple micro-vessel phantom. An identical experimental set-up was used to acquire a series of 2D projection 129Xe images on the phantom and the rat brain.  相似文献   

9.
《Biophysical journal》2022,121(23):4635-4643
Protein interiors contain void space that can bind small gas molecules. Determination of gas pathways and kinetics in proteins has been an intriguing and challenging task. Here, we combined computational methods and the hyperpolarized xenon-129 chemical exchange saturation transfer (hyper-CEST) NMR technique to investigate xenon (Xe) exchange kinetics in maltose-binding protein (MBP). A salt bridge ~9 Å from the Xe-binding site formed upon maltose binding and slowed the Xe exchange rate, leading to a hyper-CEST 129Xe signal from maltose-bound MBP. Xe dissociation occurred faster than dissociation of the salt bridge, as shown by 13C NMR spectroscopy and variable-B1 hyper-CEST experiments. “Xe flooding” molecular dynamics simulations identified a surface hydrophobic site, V23, that has good Xe binding affinity. Mutations at this site confirmed its role as a secondary exchange pathway in modulating Xe diffusion. This shows the possibility for site-specifically controlling xenon protein-solvent exchange. Analysis of the available MBP structures suggests a biological role of MBP’s large hydrophobic cavity to accommodate structural changes associated with ligand binding and protein-protein interactions.  相似文献   

10.

Background

One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange.

Methods and Principal Findings

Here we exploit the solubility, high magnetic resonance (MR) signal intensity, and large chemical shift of hyperpolarized (HP) 129Xe to probe the regional uptake of alveolar gases by directly imaging HP 129Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP 129Xe magnetization is rapidly replenished by diffusive exchange with alveolar 129Xe. The dissolved HP 129Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs.

Conclusions

The features observed in dissolved-phase 129Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios), higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP 129Xe imaging reports on pulmonary function at a fundamental level.  相似文献   

11.
12.
以细胞内物质为靶标的药物(大分子、蛋白质、多肽及核酸)只有穿透细胞膜才能进一步发挥其药效。细胞穿透多肽(穿膜肽)是由少于30个氨基酸残基组成的小肽,它们能够通过与细胞膜相互作用而穿透细胞膜这一天然屏障。穿膜肽大致分为宿主防御肽、基于信号序列的穿膜肽和富含精氨酸的穿膜肽;穿膜肽进入细胞的机制尚未完全阐明,存在倒置微团模型、地毯式模型及打孔模型等假说。穿膜肽能够携带各种物质进入细胞的特性受到人们的关注。我们就穿膜肽的种类、穿膜机制,及其在生物影像学和生物递送系统中的应用做一综述。  相似文献   

13.
In this work we investigate the level of theory necessary for reproducing the non-linear variation of the 129Xe nuclear magnetic resonance (NMR) chemical shift with the density of Xe in supercritical conditions. In detail we study how the 129Xe chemical shift depends under supercritical conditions on electron correlation, relativistic and many-body effects. The latter are included using a sequential-QM/MM methodology, in which a classical MD simulation is performed first and the chemical shift is then obtained as an average of quantum calculations of 250 MD snapshots conformations carried out for Xe n clusters (n =?2 ? 8 depending on the density). The analysis of the relativistic effects is made at the level of 4-component Hartree-Fock calculations (4c-HF) and electron correlation effects are considered using second order Møller-Plesset perturbation theory (MP2). To simplify the calculations of the relativistic and electron correlation effects we adopted an additive scheme, where the calculations on the Xe n clusters are carried out at the non-relativistic Hartree-Fock (HF) level, while electron correlation and relativistic corrections are added for all the pairs of Xe atoms in the clusters. Using this approach we obtain very good agreement with the experimental data, showing that the chemical shift of 129Xe in supercritical conditions is very well described by cluster calculations at the HF level, with small contributions from relativistic and electron correlation effects.  相似文献   

14.
In hyperpolarized xenon magnetic resonance imaging (HP (129)Xe MRI), the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP (129)Xe MRI may yield structural and functional information not detectable by conventional proton-based MRI methods. Here we demonstrate the differential distribution of HP (129)Xe in the cerebral cortex of the rat following a pain stimulus evoked in the animal's forepaw. Areas of higher HP (129)Xe signal corresponded to those areas previously demonstrated by conventional functional MRI (fMRI) methods as being activated by a forepaw pain stimulus. The percent increase in HP (129)Xe signal over baseline was 13-28%, and was detectable with a single set of pre and post stimulus images. Recent innovations in the production of highly polarized (129)Xe should make feasible the emergence of HP (129)Xe MRI as a viable adjunct method to conventional MRI for the study of brain function and disease.  相似文献   

15.
Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) 129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp 129Xe. Straightforward hp 129Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp 129Xe probe volumes during the inhalation cycle. Hp 129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.  相似文献   

16.
The development of non-viral gene delivery systems, with the capacity to overcome most of the biological barriers facing gene delivery, is challenging. We have developed peptide-based, multicomponent, non-viral delivery systems, incorporating: a bombesin peptide ligand (BBN(6–14)), to selectively target the gastrin releasing peptide receptor (GRPR); oligoarginine peptides (hexa- (R6) and nona-arginine (R9)), for plasmid DNA (pDNA) condensation; and GALA, to facilitate endosome escape. The uptake and endosome escape efficiency of bombesin/oligoarginine and bombesin/oligoarginine/GALA fusion peptides for oligonucleotide delivery was evaluated in terms of their complex size, cellular uptake, endosome escape, and cellular toxicity. Complex size and cell uptake studies demonstrated that the nona-arginine/bombesin delivery system was more efficient at condensing and delivering pDNA into PC-3 prostate cancer cells compared to the hexa-arginine/bombesin delivery system. Further, competition with free bombesin peptide, and comparative uptake studies in Caco-2 cells, which express GRPR at a lower level, suggested that GRPR contributes to the targeted uptake of this system. The addition of GALA into the nona-arginine/bombesin-based system further increased the pDNA cellular uptake at all tested N/P ratios; facilitated endosomal pDNA release; and had limited effects on cell viability. In conclusion, the delivery system combining BBN(6–14) with nona-arginine and GALA had optimal characteristics for the delivery of pDNA into the GRPR overexpressing cell line PC-3.  相似文献   

17.
ErbB is a family of epidermal growth factor receptors representing an important class of receptor tyrosine kinases that play a leading role in cellular growth, development, and differentiation. Transmembrane domains of these receptors transduce biochemical signals across the plasma membrane via lateral homo- and heterodimerization. The relatively small size of ErbB transmembrane domain complexes with detergents or lipids makes it possible to study their detailed spatial structure using three-dimensional heteronuclear high-resolution NMR spectroscopy. Here, we describe an efficient expression system and a purification procedure for preparative-scale production of transmembrane peptides from all four ErbB proteins—ErbB1, ErbB2, ErbB3, and ErbB4—for the purpose of structural studies. The recombinant peptides were produced in Escherichia coli BL21(DE3)pLysS cells as N-terminal extensions of thioredoxin A. The fusion proteins were cleaved with the light chain of human enterokinase. Several (10–30) milligrams of purified isotope-labeled transmembrane peptides were isolated using a simple and convenient procedure, which consists of consecutive steps of immobilized metal affinity chromatography and cation-exchange chromatography. The purified peptides were reconstituted in a lipid/detergent environment (micelles or bicelles) and characterized using dynamic light scattering and CD and NMR spectroscopy. The data obtained indicate that purified ErbB transmembrane peptides are suitable for structural and dynamic studies of their homo- and heterodimer complexes using high resolution NMR spectroscopy.  相似文献   

18.
Lyophilisomes are a novel class of biodegradable proteinaceous nano/micrometer capsules with potential use as drug delivery carrier. Cell-penetrating peptides (CPPs) including the TAT peptide have been successfully implemented for intracellular delivery of a broad variety of cargos including various nanoparticulate pharmaceutical carriers. In the present study, lyophilisomes were modified using CPPs in order to achieve enhanced cellular uptake. Lyophilisomes were prepared by a freezing, annealing, and lyophilization method and a cystein-elongated TAT peptide was conjugated to the lyophilisomes using a heterobifunctional linker. Fluorescent-activated cell sorting (FACS) was utilized to acquire a lyophilisome population with a particle diameter smaller than 1000 nm. Cultured HeLa, OVCAR-3, Caco-2 and SKOV-3 cells were exposed to unmodified lyophilisomes and TAT-conjugated lyophilisomes and examined with FACS. HeLa cells were investigated in more detail using a trypan blue quenching assay, confocal microscopy, and transmission electron microscopy. TAT-conjugation strongly increased binding and cellular uptake of lyophilisomes in a time-dependent manner in vitro, as assessed by FACS. These results were confirmed by confocal microscopy. Transmission electron microscopy indicated rapid cellular uptake of TAT-conjugated lyophilisomes via phagocytosis and/or macropinocytosis. In conclusion, TAT-peptides conjugated to albumin-based lyophilisomes are able to enhance cellular uptake of lyophilisomes in HeLa cells.  相似文献   

19.
A family of epidermal growth factor receptors, ErbB, represents an important class of receptor tyrosine kinases, playing a leading role in cellular growth, development and differentiation. Transmembrane domains of these receptors transduce biochemical signals across plasma membrane via lateral homo- and heterodimerization. Relatively small size of complexes of ErbB transmembrane domains with detergents or lipids allows one to study their detailed spatial structure using three-dimensional heteronuclear high-resolution NMR spectroscopy. Here, we describe the effective expression system and purification procedure for preparative-scale production of transmembrane peptides from four representatives of ErbB family, ErbB1, ErbB2, ErbB3, ErbB4, for structural studies. The recombinant peptides were produced in Escherichia coli BL21(DE3)pLysS as C-terminal extensions of thioredoxin A. The fusion protein cleavage was accomplished with the light subunit of human enterokinase. Several (10-30) milligrams of purified isotope-labeled transmembrane peptides were isolated with the use of a simple and convenient procedure, which consists of consecutive steps of immobilized metal affinity chromatography and cation-exchange chromatography. The purified peptides were reconstituted in lipid/detergent environment (micelles or bicelles) and characterized using dynamic light scattering, CD and NMR spectroscopy. The data obtained indicate that the purified ErbB transmembrane peptides are suitable for structural and dynamic studies of their homo- and heterodimer complexes using high resolution NMR spectroscopy.  相似文献   

20.
Cell-penetrating peptides (CPPs) have gained attention as promising tools to enable the delivery of various molecules in a non-invasive manner. Among the CPPs, TAT and poly-arginine have been extensively utilized in numerous studies for the delivery of functional proteins, peptides, and macromolecules to analyze cellular signaling. However, the molecular mechanisms of cellular entry remain largely unknown. Here, we applied siRNA library screening to identify the regulatory genes for the cellular entry of poly-arginine peptide based on microscopic observation of the entry of fluorescent peptides in siRNA-treated cells. In this screening, we identified the cell membrane gene SLC4A4 and the trafficking regulator gene COPA, which also plays an important role in early endosome maturation. These results demonstrated that cellular entry of poly-arginine requires at least two different steps, probably binding on the cell surface and endosomal entry. The identification of genes for cellular entry of poly-arginine provides insights into its mechanisms and should further aid in the development of highly efficient cell-penetrating peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号