首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Esculetin has been described as an inhibitor of tyrosinase and polyphenol oxidase and, therefore, of melanogenesis. In this work, we demonstrate that esculetin is not an inhibitor but a substrate of mushroom polyphenol oxidase (PPO) and horseradish peroxidase (POD), enzymes which oxidize esculetin, generating its o-quinone. Since o-quinones are very unstable, the usual way of determining the enzymatic activity (slope of recordings) is difficult. For this reason, we developed a chronometric method to characterize the kinetics of this substrate, based on measurements of the lag period in the presence of micromolar concentrations of ascorbic acid. The catalytic constant determined was of the same order for both enzymes. However, polyphenol oxidase showed greater affinity (a lower Michaelis constant) than peroxidase for esculetin. The affinity of PPO and POD towards oxygen and hydrogen peroxide was very high, suggesting the possible catalysis of both enzymes in the presence of low physiological concentrations of these oxidizing substrates. Taking into consideration optimum pHs of 4.5 and 7 for POD and PPO respectively, and the acidic pHs of melanosomes, the studies were carried out at pH 4.5 and 7. The in vivo pH might be responsible for the stronger effect of these enzymes on L-tyrosine and L-3,4-dihydroxyphenylanaline (L-DOPA) (towards melanogenesis) and on cumarins such as esculetin towards an alternative oxidative pathway.  相似文献   

2.
Esculetin has been described as an inhibitor of tyrosinase and polyphenol oxidase and, therefore, of melanogenesis. In this work, we demonstrate that esculetin is not an inhibitor but a substrate of mushroom polyphenol oxidase (PPO) and horseradish peroxidase (POD), enzymes which oxidize esculetin, generating its o-quinone. Since o-quinones are very unstable, the usual way of determining the enzymatic activity (slope of recordings) is difficult. For this reason, we developed a chronometric method to characterize the kinetics of this substrate, based on measurements of the lag period in the presence of micromolar concentrations of ascorbic acid. The catalytic constant determined was of the same order for both enzymes. However, polyphenol oxidase showed greater affinity (a lower Michaelis constant) than peroxidase for esculetin. The affinity of PPO and POD towards oxygen and hydrogen peroxide was very high, suggesting the possible catalysis of both enzymes in the presence of low physiological concentrations of these oxidizing substrates. Taking into consideration optimum pHs of 4.5 and 7 for POD and PPO respectively, and the acidic pHs of melanosomes, the studies were carried out at pH 4.5 and 7. The in vivo pH might be responsible for the stronger effect of these enzymes on L-tyrosine and L-3,4-dihydroxyphenylanaline (L-DOPA) (towards melanogenesis) and on cumarins such as esculetin towards an alternative oxidative pathway.  相似文献   

3.
鞣花酸的生理功能及工艺开发研究现状   总被引:21,自引:0,他引:21  
综述了鞣花酸的防癌,抗癌作用及其机理,同时对它的抗人体免疫缺陷病毒,抗氧化,凝血、降压、镇静等作用也作了论述,并对其生产工艺作了简单介绍。  相似文献   

4.
Constant, systematic exposure to rotenone has been utilized in animal models to induce Parkinsonism. Ellagic acid is a polyphenol with anti-inflammatory and antioxidative properties which is found in numerous natural fruits. Here, we investigated the therapeutic effects of ellagic acid in rotenone-induced toxicity in Drosophila melanogaster evaluating their antioxidant and mitoprotective properties. Adult flies were treated with rotenone and ellagic acid through their diet for 7 days, thereafter markers of neurotoxicity (acetylcholinesterase, monoamine oxidase, tyrosine hydroxylase), antioxidant and oxidative stress markers (hydrogen peroxide, nitric oxide, lipid peroxidation, protein carbonyl contents, catalase, total thiol, and nonprotein thiol) was measured. Mitochondrial respiration was also evaluated in the flies. Survival assay was carried out with both genders of the flies, and we observed a significant increase in the survival rate of flies exposed to both rotenone and ellagic acid when compared with the increased mortality rate in the groups exposed to rotenone alone. The impaired locomotion, altered redox status, and enzymes of neurotoxicity induced by rotenone were significantly ameliorated by ellagic acid to levels comparable to the control. In addition, rotenone-induced complex 1 inhibition and altered bioenergetic state were restored upon ellagic acid supplementation. These findings show the beneficial properties of ellagic acid against pesticides induced toxicity.  相似文献   

5.
Anisic acid (p-methoxybenzoic acid) was characterized as a tyrosinase inhibitor from ani-seed, a common food spice. It inhibited the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by tyrosinase with an IC50 of 0.60 mM. The inhibition of tyrosinase by anisic acid is a reversible reaction with residual enzyme activity. This phenolic acid was found to be a classical noncompetitive inhibitor and the inhibition constant K(I) was obtained as 0.603 mM. Anisic acid also inhibited the hydroxylation of L-tyrosine catalyzed by tyrosinase. The lag phase caused by the monophenolase activity was lengthened and the steady-state activity of the enzyme was decreased by anisic acid.  相似文献   

6.
The influence of serum and albumin on enzymatic and non-enzymatic lipid oxidation was investigated. Intensity of oxidation was measured as the amount of oxygen consumed by the sample and by quantitation of malonaldehyde formed during breakdown of lipid peroxides. Non-enzymatic lipid oxidation was stimulated by ascorbic acid or ferrous ions and enzymatic by NADPH-dependent oxidase, 15-lipoxygenase and 12-lipoxygenase. Albumin inhibits lipid oxidation only when pure fatty acid (arachidonic or linoleic) is the substrate for this oxidation. Serum was a stronger inhibitor than an equivalent amount of albumin and it also inhibited oxidation of a mixture of lipids from liver microsomes. It is concluded that serum contains two antioxidant factors: albumin which binds fatty acids and probably another factor which is a true antioxidant.  相似文献   

7.
《Phytochemistry》1987,26(4):913-915
An NADPH oxidase has been partially purified from maize kernels. The activity of this enzyme, as measured by NADPH disappearance or oxygen consumption, was enhanced by dipicolinic acid (pyridine 2,6-dicarboxylic acid). Dipicolinic acid was not consumed in this reaction indicating that it was an activator rather than a substrate of this enzyme.  相似文献   

8.
Plant phenols as in vitro inhibitors of glutathione S-transferase(s)   总被引:3,自引:0,他引:3  
Ellagic acid, a commonly occurring plant phenol, was shown to be a potent in vitro inhibitor of GSH-transferase(s) activity. Other plant phenols such as ferrulic acid, caffeic acid and chlorogenic acid also showed a concentration dependent inhibition of GSH-transferase(s) activity. The I50 values of ellagic acid, caffeic acid, chlorogenic acid and ferrulic acid were 8.3 X 10(-5)M, 14.0 X 10(-5)M, 20.0 X 10(-5)M and 22.0 X 10(-5)M respectively, suggesting that ellagic acid is the most potent inhibitor of all the four studied plant phenols. At 55 microM concentration of ellagic acid, a significant inhibition (35-47%) was observed on GSH-transferase activity towards CDNB, p-nitrobenzyl chloride and 1,2-epoxy-3-(p-nitrophenoxy)propane as substrates. Ellagic acid inhibited GSH-transferase(s) activity in a non-competitive manner with respect to CDNB while with respect to GSH it inhibited the enzyme activity in a competitive manner. Other phenolic compounds purpurogallin , quercetin, alizarin and monolactone also showed a concentration dependent inhibition of the enzyme activity with a I50 of 0.8 X 10(-5)M, 1.0 X 10(-5)M, 8.0 X 10(-5)M and 16.0 X 10(-5)M respectively. These inhibitors of GSH-transferase(s) activity should be useful in studying the in vitro enzyme mediated reactions of exogenous and endogenous compounds.  相似文献   

9.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) belongs to toxicologically important class of poly halogenated aromatic hydrocarbons and produce wide variety of adverse effects in humans. The present study investigated the protective effect of ellagic acid, a natural polyphenolic compound against TCDD-induced nephrotoxicity in Wistar rats. TCDD-induced nephrotoxicity was reflected in marked changes in the histology of kidney, increase in levels of kidney markers (serum urea, serum creatinine) and lipid peroxides. A significant increase in activity of phase I enzyme CYP1A1 with concomitant decline in the activities of phase II enzymes [non-enzymic antioxidant and various enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase] was also observed. In addition, TCDD treated rats showed alterations in ATPase enzyme activities such as Na+ K+-ATPase, Mg2+ ATPase and Ca2+ ATPase. Oral pre-treatment with ellagic acid prevented TCDD-induced alterations in levels of kidney markers. Ellagic acid pre-treatment significantly counteracted TCDD-induced oxidative stress by decreasing CYP1A1 activity and enhancing the antioxidant status. Furthermore, ellagic acid restored TCDD-induced histopathological changes and alterations in ATPase enzyme activities. The results of the present study show that significant protective effect rendered by ellagic acid against TCDD-induced nephrotoxicity might be attributed to its antioxidant potential.  相似文献   

10.
Ellagic acid, a common plant phenol, was shown to be a potent inhibitor of epidermal microsomal aryl hydrocarbon hydroxylase (AHH) activity in vitro, and of benzo[a]pyrene (BP)-binding to both calf thymus DNA in vitro and to epidermal DNA in vivo. The in vitro addition of ellagic acid (0.25-2.0 microM) resulted in a dose-dependent inhibition of AHH activity in epidermal microsomes prepared from control or carcinogen-treated animals. The I50 of ellagic acid for epidermal AHH was 1.0 microM making it the most potent inhibitor of epidermal AHH yet identified. In vitro addition of ellagic acid to microsomal suspensions prepared from control or coal tar-treated animals resulted in 90% inhibition of BP-binding to calf thymus DNA. Application of ellagic acid to the skin (0.5-10.0 mumol/10 gm body wt) caused a dose-dependent inhibition of BP-binding to epidermal DNA. Our results suggest that phenolic compounds such as ellagic acid may prove useful in modulating the risk of cutaneous cancer from environmental chemicals.  相似文献   

11.
Topical application of ellagic acid, a naturally occurring dietary plant phenol, to Balb/C mice resulted in significant protection against 3-methylcholanthrene (MCA)-induced skin tumorigenesis. Ellagic acid was found to be an effective inhibitor of tumor formation whether the tumor data are considered as percent mice with tumors, cumulative number of tumors, tumors per mouse or tumors per tumor bearing animal as a function of the number of weeks on test. By 8, 10, 12, 14, and 16 weeks of testing, the number of tumors per mouse in the group receiving MCA alone was 2.0, 3.4, 4.0, 4.9 and 5.3, respectively, whereas the corresponding numbers in the group receiving MCA plus 2 mumol ellagic acid were 0, 0.3, 0.4, 0.6 and 1.2, respectively. At the termination of the experiment (16 weeks) aryl hydrocarbon hydroxylase (AHH) activity in skin and liver and the extent of 3H-BP-binding to skin, liver and lung DNA were determined and both of these parameters were found to be significantly inhibited in the animals treated with ellagic acid. These results indicate that ellagic acid can inhibit the metabolism of polyaromatic hydrocarbons and modulate skin carcinogenesis induced by these chemicals.  相似文献   

12.
Huang W  Li Z  Niu H  Li L  Lin W  Yang J 《Bioresource technology》2008,99(9):3552-3558
Conversion of acorn fringe extract into ellagic acid production by Aspergillus oryzae and Endomyces fibuliger were investigated. The results showed that ellagic acid production was maximized when co-fermentation of the two fungi was performed at 30 degrees C and pH 5.0 with 5.7 g/l of initial substrate concentration, which were close to the optimal values for both fungi to yield an appropriate consortium of hydrolytic enzymes. Meanwhile, it was found that the co-fermentation could compensate the deficiencies in the level of polyphenol oxidase activity from pure A. oryzae and the levels of ellagitannin acyl hydrolase and beta-glucosidase activities from pure E. fibuliger, resulting in. 0.91 g/l of biomass concentration containing 1.84 g/l of ellagic acid. The research not only demonstrates that the co-fermentation is an effective approach to utilize forest byproduct for ellagic acid production, but also provides more evidences for understanding evolution of ellagic acid production with enzymes actions, which is important for process control of ellagic acid production in industrial application.  相似文献   

13.
Whisky exerts an inhibitory effect on melanogenesis in B16 cells, the anti-melanogenic activity being positively correlated with the aging period and anti-oxidative activity of whisky. We examined the correlation between the inhibition of melanogenesis and the concentration of each compound in various whiskies to evaluate the importance of 11 different whisky polyphenols, including ellagic acid, gallic acid and lyoniresinol, in the anti-melanogenic activity of whisky. The concentration of all the compounds was positively correlated with the anti-melanogenic activity of whisky. Ellagic acid, gallic acid and lyoniresinol were the predominant polyphenols in the whiskies measured by HPLC. These three compounds also significantly inhibited the melanogenesis and tyrosinase activity in B16 cells. Ellagic acid, gallic acid and lyoniresinol were confirmed as the major participants in the anti-melanogenic activity of whisky.  相似文献   

14.
Whisky exerts an inhibitory effect on melanogenesis in B16 cells, the anti-melanogenic activity being positively correlated with the aging period and anti-oxidative activity of whisky. We examined the correlation between the inhibition of melanogenesis and the concentration of each compound in various whiskies to evaluate the importance of 11 different whisky polyphenols, including ellagic acid, gallic acid and lyoniresinol, in the anti-melanogenic activity of whisky. The concentration of all the compounds was positively correlated with the anti-melanogenic activity of whisky. Ellagic acid, gallic acid and lyoniresinol were the predominant polyphenols in the whiskies measured by HPLC. These three compounds also significantly inhibited the melanogenesis and tyrosinase activity in B16 cells. Ellagic acid, gallic acid and lyoniresinol were confirmed as the major participants in the anti-melanogenic activity of whisky.  相似文献   

15.
Piperonylic acid is a natural molecule with a benzoic acid group and high antioxidant capacity. Based on its aromatic acid structure and antioxidant properties, we studied the effects of piperonylic acid on tyrosinase by the analysis of its inhibitory kinetics and computational simulations. Piperonylic acid reversibly inhibited tyrosinase through a mixed-type inhibitory mechanism. The time courses of the tyrosinase inhibition showed that piperonylic acid binds to tyrosinase very quickly and the inactivation processes follow first-order kinetics. The continuous substrate reactions indicated that piperonylic acid induced a tight-binding inhibition and the substrate can promote the inactivation process. The ANS-binding fluorescence of tyrosinase suggested that piperonylic acid did not detectably disrupt the tertiary structure of the enzyme. The results of the computational docking and molecular dynamics simulations showed that piperonylic acid closely interacts with three residues and it might block the active site of tyrosinase.  相似文献   

16.
Sensitive assay methods for tyrosinase are essential not only for the understanding the process of pigment production but also for the development of effective inhibitors of tyrosinase. To develop an efficient assay method, we applied thymol blue to reaction mixtures. The enzyme kinetic study revealed that DOPA oxidase activity of tyrosinase in thymol blue-applied reaction system was more sensitively measured, even under lower enzyme units compared with the previous report with significant enhancement of Vmax while affinity change on substrate was not observed. To test whether this method could be applicable to the inhibition and the inactivation kinetic study of tyrosinase, the effect of kojic acid, a well-known tyrosinase inhibitor, and sodium chloride respectively, have been studied. Conclusively, thymol blue method can assay tyrosinase activity with sensitivity and is applicable to the inhibition and the inactivation study of tyrosinase.  相似文献   

17.
采用超声波辅助-乙酸乙酯提取方法获得桐花树〔Aegiceras corniculatum(Linn.)Blanco〕叶片多酚提取物,研究了该提取物对酪氨酸酶活性的抑制作用及其动力学特征,并分析了该提取物对DPPH·自由基的清除作用及其抗菌活性。结果显示:多酚提取物得率约为(122.0±31.4)mg·g-1,提取物中多酚含量约为(521.8±17.2)mg·g-1。该提取物对酪氨酸酶活性的抑制作用呈明显正相关的量效关系,IC50为0.650 g·L-1,与阳性对照槲皮素对酪氨酸酶活性的抑制能力相近;该提取物通过降低酶活性实现对酪氨酸酶活性的抑制,且该抑制作用具有可逆性;随提取物质量浓度的提高酶促反应Km值增大、vm值减小,其动力学特征符合混合Ⅰ型抑制类型;对游离酶的抑制常数Ki为0.833 g·L-1,对酶-底物络合物的抑制常数Kis为1.823 g·L-1,表明该提取物与游离酶的亲和力大于其与酶-底物络合物的亲和力。随质量浓度提高,该提取物对DPPH·自由基的清除率逐渐增大并在0.000~0.600 g·L-1范围内呈明显量效关系,且IC50为0.304 g·L-1,与0.036 g·L-1槲皮素等效,显示该多酚提取物对自由基的清除能力较强。随质量浓度提高,该提取物对大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)和枯草芽孢杆菌(Bacillus subtilis)的抑菌圈直径均逐渐增大,显示该提取物对3种供试菌均有抑菌作用,最小抑菌浓度均为25 g·L-1。结果表明:通过深入的开发研究,桐花树叶片多酚提取物可作为兼具辅助防腐抑菌功能的新型酪氨酸酶抑制剂。  相似文献   

18.
The determination of phenolic compounds is significant given its toxicity, even at very low concentration levels. Amperometric determination of phenols is a simple technique available. Direct oxidation of phenols can be used, but another possibility is the use of polyphenol oxidase (tyrosinase) enzyme biosensors that oxidises the phenolic compounds into their corresponding quinones. Reduction of the resulting quinones accomplishes the amplification of the amperometric signal, as long as the result of the reduction process is the corresponding cathecol, this being able to be oxidised again by the polyphenol oxidase immobilized on the surface of the biosensor. In this communication, simultaneous determination of different phenols was carried out combining biosensor measurements with chemometric tools, in what is known as electronic tongue. The departure information used was the overlapped reduction voltammogram generated with the amperometric biosensor based on polyphenol oxidase. Artificial Neural Networks (ANN) were used for extraction and quantification of each compound. Phenol, cathecol and m-cresol formed the three-analyte study case resolved in this work. Good prediction ability was attained, and so, the separate quantification of these three phenols was accomplished.  相似文献   

19.
1. Phenol compounds (ellagic acid, quercetin and purpurogallin), glutathione analogues (S-hexylglutathione and S-octylglutathione) and a diuretic drug (ethacrynic acid) were compared for their inhibitory effects on glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) in the canine erythrocytes. 2. All these compounds inhibited GST activity; quercetin was found to be the most potent inhibitor. 3. Ellagic acid, purpurogallin, quercetin and ethacrynic acid inhibited GR activity; S-hexylglutathione and S-octylglutathione had no effect on GR and GSH-Px activities. 4. Quercetin and purpurogallin inhibited GST non-competitively toward glutathione, whereas ellagic acid showed a competitive inhibition. Ellagic acid and purpurogallin inhibited GR non-competitively toward oxidized glutathione.  相似文献   

20.
The exchange of bound FAD for free FAD was studied with D-amino acid oxidase (D-amino acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3) and beta-D-glucose oxidase (beta-D-glucose:oxygen 1-oxidoreductase, EC 1.1.3.4). For a simple measurement of the reaction rate, equimolar amounts of the enzyme and [14C]FAD were mixed. The exchange occurred very rapidly in the holoenzyme of D-amino acid oxidase at 25 degrees C, pH 8.3 (half life of the exchange: 0.8 min), but slowly in the presence of the substrate or a competitive inhibitor, benzoate. It also occurred slowly in the purple complex of D-amino acid oxidase. In the case of beta-D-glucose oxidase, however, the exchange occurred very slowly at 25 degrees C, pH 5.6, regardless of the presence of the substrate or p-chloromercuribenzoate. On the basis of these findings, the turnover of the coenzymes of flavin enzymes in mammals is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号