首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evelyn Martin  Ewald Komor 《Planta》1980,148(4):367-373
Sucrose is taken up and accumulated by cotyledons of Ricinus communis L. Autoradiographic studies reveal a predominant accumulation of sucrose in the phloem of the cotyledons. The export of sucrose from the cotyledons to hypocotyl and roots proceeds in the phloem by mass flow. These results, taken together with previous data, are experimental evidence for proton-sucrose symport as the mechanism of phloem loading.  相似文献   

2.
Mature leaves of corn plants (Zea mays L. cv. Prior) which were darkened for 48 h contain neither bundle-sheath starch nor glucose, and their sucrose content is below 5 M. In such leaves phloem export has ceased. When re-illuminated, photosynthetic sucrose production starts without delay, but the sucrose: glucose ratio is 1.25:1. Obviously, most of the new-formed sugar is utilized locally. Labeling with 14CO2 has shown that phloen export starts 30 to 40 min after the onset of photosynthesis, when the sucrose: glucose ratio has increased to 13:1. The first newly formed starch can be detected when phloem export is reactivated. Glucose content remains constantly low af about 2 M for at least 2 h, and it never exceeds 10 M. Radioactivity in the exporting veins is about five times higher after 2 to 7 h of re-illumination than in the 14-h-day plant. Therefore, phloem export is either intensified during the period of reactivation or exported assimilates are partly unloaded along their way. Comparison of photosynthetic activity of equal-sized leaf strips has shown that both accumulation of photosynthates and radioactivity of exporting veins are about three times higher in the detached strip than in the strip which remained attached to the mother plant.  相似文献   

3.
The loading and transport functions of vascular bundles in maize (Zea mays L.) leaf strips were investigated by microautoradiography after application of 14CO2. The concentrations of 14C-contents in thin-walled sieve tubes of individual bundles in the loading and transport regions were determined by digital image analysis of silver-grain density over the sieve tubes and compared. In the loading region, relatively high concentrations of 14C-contents were found in the thin-walled sieve tubes of small bundles and in the small, thin-walled sieve tubes of the intermediate bundles; the concentration of 14C-label in large bundles was very low. In the transport region, at a transport distance of 2 cm, all of the small bundles contained 14C-assimilates, but generally less than the same bundles did in the loading region; by comparison, at that distance intermediate and large bundles contained two-to threefold more 14C-assimilates than the same bundles in the loading region. The lateral transfer of assimilates from smaller to larger bundles via transverse veins could be demonstrated directly in microautoradiographs. A reverse transport from larger to smaller bundles was not found. At a transport distance of 4 cm, all large and intermediate bundles were 14C-labeled, but many of the small bundles were not. Although all longitudinal bundles were able to transport 14C-asimilates longitudinally down the blade, it was the large bundles that were primarily involved with longitudinal transport and the small bundles that were primarily involved with loading.  相似文献   

4.
Microautoradiographs showed that [14C]sucrose taken up in the xylem of small and intermediate (longitudinal) vascular bundles of Zea mays leaf strips was quickly accumulated by vascular parenchyma cells abutting the vessels. The first sieve tubes to exhibit 14C-labeling during the [14C]sucrose experiments were thick-walled sieve tubes contiguous to the more heavily labeled vascular parenchyma cells. (These two cell types typically have numerous plasmodesmatal connections.) With increasing [14C]sucrose feeding periods, greater proportions of thick- and thin-walled sieve tubes became labeled, but few of the labeled thin-walled sieve tubes were associated with labeled companion cells. (Only the thin-walled sieve tubes are associated with companion cells.) When portions of leaf strips were exposed to 14CO2 for 5 min, the vascular parenchyma cells-regardless of their location in relation to the vessels or sieve tubes-were the most consistently labeled cells of small and intermediate bundles, and label (14C-photosynthate) appeared in a greater proportion of thin-walled sieve tubes than thick-walled sieve tubes. After a 5-min chase with 12CO2, the thin-walled sieve tubes were more heavily labeled than any other cell type of the leaf. After a 10-min chase with 12CO2, the thin-walled sieve tubes were even more heavily labeled. The companion cells generally were less heavily labeled than their associated thin-walled sieve tubes. Although all of the thick-walled sieve tubes were labeled in portions of leaf strips fed 14CO2 for 5 min and given a 10-min 12CO2 chase, only five of 72 vascular bundles below the 14CO2-exposed portions contained labeled thick-walled sieve tubes. Moreover, the few labeled thick-walledsieve tubes of the transport region always abutted 14C-labeled vascular parenchyma cells. The results of this study indicate that (1) the vascular parenchyma cells are able to retrieve at least sucrose from the vessels and transfer it to the thick-walled sieve tubes, (2) the thick-walled sieve tubes are not involved in long-distance transport, and (3) the thin-walled sieve tubes are capable themselves of accumulating sucrose and photosynthates from the apoplast, without the companion cells serving as intermediary cells.  相似文献   

5.
The mature petiole of celery is an organ with versatile sink/source capacities where sucrose and mannitol are unloaded from and reloaded into the phloem cells. Plasma-membrane vesicles were purified by twophase partitioning either from phloem strands isolated from mature petioles of celery (Apium graveolens L.) or from mature petioles devoid of vascular bundles. Both types of vesicle were comparable in purity (more than 86% of plasma-membrane origin), size (135 nm diameter) and orientation (72% right-side-out). Plasma-membrane vesicles from phloem tissues had a higher vanadate-sensitive ATPase activity than plasma-membrane vesicles from petioles. Plasma-membrane vesicles from phloem tissues accumulated mannitol and sucrose in response to an artificial proton-motive force, in agreement with the existence of proton/substrate carriers. Plasma-membrane vesicles from petioles devoid of vascular bundles accumulated only mannitol following application of an artificial proton-motive force. The data suggest the volvement of apoplasmic transport events. The pathway for sucrose uptake in storage parenchyma cells is discussed in the light of the available physiological data.  相似文献   

6.
External sucrose, supplied by the endosperm in vivo, is the physiological source of sucrose for Ricinus communis L. seedlings. It is taken up by the cotyledons and exported via the sieve tubes to the growing hypocotyl and root. Two parallel pathways of external sucrose to the sieve tubes, directly via the apoplasm and indirectly after transit through the mesophyll, have already been established (G. Orlich and E. Komor, 1992). In this study, we analysed whether a symplasmic flow of sucrose contributes to phloem loading. Uptake of external sucrose into the mesophyll and into the sieve tubes, and export of total sucrose were measured with intact and exuding seedlings in the presence of p-chloromercuribenzenesulfonic acid (PCMBS). Sucrose uptake into the mesophyll and into the sieve tubes was inhibited by 80–90%. Consequently, export of total sucrose slowed down. However, after the addition of PCMBS, sucrose was transiently exported in such a high amount that could not be accounted for by the residual uptake activity nor by the amount of sucrose confined to the sieve element-companion cell complex (seccc). From the results, we conclude that most of the sucrose exported transiently had moved to the sieve tubes from a symplasmic domain larger than the seccc, comprising at least all the cells of the bundle including the bundle sheath. We suggest that the symplasmic flow of sucrose observed is a mass flow driven by a turgor pressure. As a structural prerequisite for a symplasmic flow, plasmodesmata interconnect all the cells from the bundle sheath to the sieve tubes and also occur between the bundle sheath and the mesophyll. The phloem loading pathway of Ricinus cotyledons can thus be classified as a combination of three different routes. Received: 17 October 1997 / Accepted: 9 March 1998  相似文献   

7.
Summary Flowering cultivars of Hibiscus rosa-sinensis L. were either cross-pollinated or self-pollinated. Fruit set was observed on 52% of the cross-fertilized flowers, while only 4.6% of the self-fertilized flowers were not abscised. Once during fruit and seed growth, the subtending leaf was exposed to 14CO2, and translocation of labelled photoassimilate was recorded by macro- and microautoradiography. Phloem transport into the raphe occurred in both fruits with fertilized and fruits with non-fertilized ovules. Since empty ovules showed some sink strength, it is assumed that growth of vegetative seed-tissue signalizes the retardation of completion of the abscission process. During fruit growth a considerable amount of starch is deposited in the distal layer of the abscission zone. Part of this starch is consumed during growth of cross-fertilized fruits.  相似文献   

8.
Metabolites and enzyme activities were measured in the phloem sap exuding from a cut hypocotyl of germinating castor-bean (Ricinus communis L.) seedlings. The sap contained considerable quantities of adenine nucleotides, uridine nucleotides, uridine diphosphoglucose (UDPGlc), all the major phosphorylated metabolites required for glycolysis, fructose-2,6-bisphosphate and pyrophosphate. Supplying 200 mM glucose instead of sucrose to the cotyledons resulted in high concentrations of glucose in the sap, but did not modify the metabolite levels. In contrast, when 200 mM fructose was supplied we found only a low level of fructose but a raised sucrose concentration in the sap, which was accompanied by a three-to fourfold decrease of UDPGlc, and an increase of pyrophosphate, UDP and UTP. The measured levels of metabolites are used to estimate the molar mass action ratios and in-vivo free-energy change associated with the various reactions of sucrose breakdown and glycolysis in the phloem. It is concluded that the reactions catalysed by ATP-dependent phosphofructokinase and pyruvate kinase are removed from equilibrium in the phloem, whereas the reactions catalysed by sucrose synthase, UDPGlc-pyrophosphorylase, phosphoglucose mutase, phosphoglucose isomerase, aldolase, triose-phosphate isomerase, phosphoglycerate mutase and enolase are close to equilibrium within the conducting elements of the phloem. Since the exuded sap contained negligible or undetectable activities of the enzymes, it is concluded, that the responsible proteins are bound, or sequesterd behind plasmodesmata, possibly in the companion cells. It is argued that sucrose mobilisation via a reversible reaction catalysed by sucrose synthase is particularily well suited to allow the rate of sucrose breakdown in the phloem to respond to changes in the metabolic requirement for ATP, and for UDPGlc during callose production. It is also calculated that the transport of nucleotides in the phloem sap implies that there must be a very considerable uptake or de-novo biosynthesis of these cofactors in the phloem.  相似文献   

9.
Exudate was collected fromRicinus communis L. cotyledons after cutting the hypocotyl. It contained high levels of sucrose and potassium, a low level of calcium, and a pH of approx. 7.5. After application of [14C] sucrose to the cotyledons, radioactivity could be recovered from the exudate, indicating that the exudate was derived from the phloem. Using data from a number of individual seedlings, correlations between loading rates of sucrose, translocation rates, and sucrose and potassium contents were analyzed. A positive correlation was found between the rate of sucrose loading and the rate of sucrose exudation, whereas a negative correlation existed between the contents of sucrose and potassium in the phloem.  相似文献   

10.
R. I. Grange  A. J. Peel 《Planta》1978,138(1):15-23
Sucrose specific mass transfer measurements were made in a translocating willow shoot (Salix viminalis L.) by a steady state labelling technique and the translocate sucrose specific activity, concentration and velocity monitored by analysis of the honeydew from two colonies of the willow aphid Tuberolachnus salignus Gmelin. The values of sucrose SMT obtained were related to the simultaneous measurements of translocate concentration and velocity and to the gradients of sucrose concentration within the stem transport path to determine if transport was a bulk flow or a diffusional analogue. Estimates of potassium ion concentration in the sieve tubes were made, using aphid honeydew, and related to the sucrose SMT measured simultaneously. Correlations were found between translocate concentration, velocity and SMT which suggested that solution flow was occurring rather than a process analogous to diffusion. Evidence was obtained that velocity of flow was a valid concept and that the measured velocity was being lowered by leakage of tracer from the sieve tubes. The analysis of potassium concentration suggested that if solution flow was occurring then potassium must be very exchangeable down the transport path. A good correlation was observed between the SMT of sucrose and the combined gradient of sucrose and potassium concentration, though this gradient was in the opposite direction to transport in some cases.Abbreviations SMT Sucrose specific mass transfer rate - SAR Specific activity ratio - OP Osmotic pressure  相似文献   

11.
The phloem is a central actor in plant development and nutrition, providing nutrients and energy to sink organs and integrating interorgan communication. A comprehensive picture of the molecules trafficking in phloem sap is being made available, with recent surveys of proteins, RNAs, sugars, and other metabolites, some of which are potentially acting as signals. In this review, we focus on recent breakthroughs on phloem transport and signalling. A case study was phloem loading of sucrose, acting both as a nutrient and as a signal, whose activity was shown to be tightly regulated. Recent advances also described actors of macromolecular trafficking in sieve elements, including chaperones and RNA binding proteins, involved potentially in the formation of ribonucleoprotein complexes. Likewise, long distance signalling appeared to integrate electrical potential waves, calcium bursts and potentially the generation of reactive oxygen species. The ubiquitin–proteasome system was also proposed to be on action in sieve elements for signalling and protein turnover. Surprisingly, several basic processes of phloem physiology are still under debate. Hence, the absence in phloem sap of reducing sugar species, such as hexoses, was recently challenged with observations based on an analysis of the sap from Ranunculaceae and Papaveraceae. The possibility that protein synthesis might occur in sieve elements was again questioned with the identification of components of the translational machinery in Pumpkin phloem sap. Altogether, these new findings strengthen the idea that phloem is playing a central role in interorgan nutrient exchanges and communication and demonstrate that the ways by which this is achieved can obey various patterns among species.  相似文献   

12.
When [1-14C]indol-3yl-acetic acid ([1-14C]IAA) was applied to the upper surface of a mature foliage leaf of garden pea (Pisum sativum L. cv. Alderman), 14C effluxed basipetally but not acropetally from 30-mm-long internode segments excised 4 h after the application of [1-14C]IAA. This basipetal efflux was strongly inhibited by the inclusion of 3.10–6 mol· dm3 N-1-naphthylphthalamic acid (NPA) in the efflux buffer. In contrast, when [14C] sucrose was applied to the leaf, the efflux of label from stem segments excised subsequently was neither polar nor sensitive to NPA. The [1-14C]IAA was initially exported from mature leaves in the phloem — transport was rapid and apolar; label was recovered from aphids feeding on the stem; and label was recovered in exudates collected from severed petioles in 20 mM ethylenediaminetetraacetic acid. No 14C was detected in aphids feeding on the stems of plants to which [1-14C]IAA had been applied apically, even though the internode on which they were feeding transported considerable quantities of label. Localised applications of NPA to the stem strongly inhibited the basipetal transport of apically applied [1-14C]IAA, but did not affect transport of [1-14C]IAA in the phloem. These results demonstrate for the first time that IAA exported from leaves in the phloem can be transferred into the extravascular polar auxin transport pathway but that reciprocal transfer probably does not occur. In intact plants, transfer of foliar-applied [1-14C]IAA from the phloem to the polar auxin transport pathway was confined to immature tissues at the shoot apex. In plants in which all tissues above the fed leaf were removed before labelling, a limited transfer of IAA occurred in more mature regions of the stem.Abbreviations IAA indol-3yl-acetic acid - EDTA ethylenediaminetetraacetic acid - NPA N-1-naphthylphthalamic acid We are grateful to the Nuffield Foundation for supporting this research under the NUF-URB95 scheme and for the provision of a bursary to A.J.C. We thank Professor Dennis A. Baker for constructive comments on a draft of this paper and Mrs. Rosemary Bell for her able technical assistance.  相似文献   

13.
Detached leaves of Cyclamen persicum Mill. can be used as a simple source-sink system. Phloem transport in the excised material was monitored by the noninvasive 11C-technique. Assimilate movement stopped immediately when the petiole was cut off. However, within 20 min a recovery of transport was observed. The translocation rate in the detached leaf was only 13% of that in the intact plant. 14C-Xenobiotics and [3H]sucrose were injected into the upper petiole parenchyma (source). They moved downstream by a symplastic route. The stump of the petiole was inserted into a buffer solution containing ethylenediaminetetraacetic acid (sink). After 3 h, the distribution of sucrose and xenobiotics was determined in five subsequent segments of the petiole (path). The retention coefficient (r) was calculated from the ratio of radioactivity in the vascular bundle to that in the petiole parenchyma. The distribution along the vascular path was given by a geometric progression, whereas its constant was the transport coefficient (q). Values of r and q corresponded with the degree of phloem mobility and ambimobility. Four groups of compounds were classified: (i) acidic substances with log Kow = — 2 to — 2.4 (Kow is the partition coefficient octanol/water) at pH 8 (pH of sieve tube sap), retained by ion trapping and exhibiting small lateral efflux (q0.7; maleic hydrazide, dalapon); (ii) acidic substances with log Kow = — 0.7 to — 0.8 at pH 8, retained by ion trapping and subjected to a moderate lateral efflux (0.7>q> 0.5; 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, bromoxynil); (iii) nonionised substances retained by optimum permeability, exhibiting a considerable lateral leakage (q<0.5; glyphosate, amitrole); (iv) substances without basipetal transport in the phloem (atrazine, diuron). Retention of sucrose corresponded quantitatively with that shown in group (i). This classification was also supported by results of uptake and efflux experiments using the isolated conducting tissue. Theoretical translocation profiles were calculated from the determined transport coefficients (q).Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - Kow partition coefficient octanol/water - MCPA 2-methyl-4-chloro-phenoxyacetic acid - q transport coefficient in the vascular bundle - r retention coefficient in the vascular bundle The authors gratefully acknowledge the assistance of H. Fiedler and M. Neugebauer. We are particularly grateful to K. Dutschka, G. Hudepokl, and Dr. J. Knust for producing 11CO2.  相似文献   

14.
Jaleh Daie 《Planta》1987,171(4):474-482
The uptake of different sugars was studied in segments of isolated phloem from petioles of celery (Apium graveolens L.) in order to determine the kinetics and specificity of phloem loading in this highly uniform conductive tissue. The uptake kinetics of sucrose and the sugar alcohol, mannitol, which are both phloem-translocated, indicated presence of a single saturable system, while uptake of non-phloem sugars (glucose and 3-O-methylglucose) exhibited biphasic kinetics with lower uptake rates than those for sucrose and mannitol. The presence of unlabeled mannitol, 3-O-methylglucose and maltose in the incubation solution did not cause inhibition of labeled-sucrose uptake, indicating high carrier specificity and lack of sucrose hydrolysis in vivo. The pH optimum for sucrose uptake was 5–6. Furthermore, a rapid and transient alkalinization of the external media by sucrose indicated a sugar/H+-cotransport mechanism. Dual-labeling experiments showed that sucrose influx continued at a constant rate (V max=15 mol·h-1·(g FW)-1), whereas sucrose efflux was low and insensitive to external concentration. Therefore, the saturable uptake kinetics for sucrose did not appear to be the result of an equilibrium between rates of sucrose influx and efflux.Abbreviations 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzene sulfonate - SE-CC sieve element-companion cell - VB vascular bundle  相似文献   

15.
Walter Eschrich 《Planta》1984,161(2):113-119
Mature leaf blades of 48-h predarkened maize plants (Zea mays L. cv. Prior) were excised, and treated apically as the source (light, normal air) and basally as the sink (light or dark, air without CO2). After providing the source portion with 14CO2, the sink portions were harvested after 2, 7 or 14 h by freezing with liquid nitrogen, grinding, and freeze-drying. Extracts, fractionated by ionexchange resins into neutral, basic and acid fractions, were chromatographed on thin cellulose layers, and autoradiographed. Identification of labeled compounds was carried out by co-chromatography with authentic labeled substances. Activities of enzymes pertaining to the metabolism of sucrose were checked. Results show that the source supplies sucrose to the sink, where it is unloaded and metabolized by acid invertase (EC 3.2.1.26) in both the light and the dark. Starch appearing in the sink only in the light, after 7 h of re-illumination, yields labeled glucose upon hydrolysis. Although sucrose-phosphate synthetase (EC 2.4.1.14) is active in sinks and in isolated vascular-bundle fragments, it remains questionable whether sucrose unloaded from sieve tubes is metabolized by a method other than inversion. Sucrose synthetase (EC 2.4.1.13) was found to be inactive. Obviously, the main metabolite of unloaded sucrose is glucose-6-phosphate, giving access to the glycolytic pathway. The main difference between the sinks in the light and the dark is the lack of labeled glycine and serine in the dark. This indicates that in the light decarboxylation of glycine yields CO2, which is recycled photosynthetically.Abbrevations Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - TLC thin-layer chromatography - UDPGlc uridine 5-diphosphate glucose  相似文献   

16.
Summary The structure of the phloem was studied in stem and leaf ofArtemisia afra Jacq., with particular attention being given to the sieve element walls. Both primary and secondary sieve elements of stem and midvein have nacreous walls, which persist in mature cells. Histochemical tests indicated that the sieve element wall layers contained some pectin. Sieve element wall layers lack lignin. Sieve elements of the minor veins (secondary and tertiary veins) lack nacreous thickening, although their walls may be relatively thick. These walls and those of contiguous transfer cells are rich in pectic substances. Transfer cell wall ingrowths are more highly developed in tertiary than in secondary veins.  相似文献   

17.
When membrane vesicles from maize (Zea mays L.) coleoptiles are extracted at high buffer strength, a pH-driven, saturable association of [14C] indole-3-acetic acid is found, similar to the in-vitro auxin-transport system previously described for Cucurbita hypocotyls. The phytotropins naphthylphthalamic acid and pyrenoylbenzoic acid increase net uptake, pressumably by inhibiting the auxin-efflux carrier.Abbreviations IAA indole-3-acetic acid - ION3 ionophore mixture of carbonylcyanide-3-chlorophenylhydrazone, nigericin and valinomycin - 1-NAA, 2-NAA 1-, 2-naphthaleneacetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid  相似文献   

18.
D. Vreugdenhil 《Planta》1985,163(2):238-240
The potassium contents of bark strips of cassava (Manihot esculenta Crantz) and of phloem exudate of castor bean (Ricinus communis L.) were analyzed at different regions of the stem. In cassava, a peak in potassium content was observed near the first mature leaf, leveling off both above and below this point. In castor bean, only a downward decreasing gradient was observed. In both plants, the direction of the potassium gradient coincided with the presumed direction of assimilate flow.  相似文献   

19.
R. F. Evert  W. Eschrich  W. Heyser 《Planta》1978,138(3):279-294
Small and intermediate (longitudinal) vascular bundles of the Zea mays leaf are surrounded by chlorenchymatous bundle sheaths and consist of one or two vessels, variable numbers of vascular parenchyma cells, and two or more sieve tubes some of which are associated with companion cells. Sieve tubes not associated with companion cells have relatively thick walls and commonly are in direct contact with the vessels. The thick-walled sieve tubes have abundant cytoplasmic connections with contiguous vascular parenchyma cells; in contrast, connections between vascular parenchyma cells and thin-walled sieve tubes are rare. Connections are abundant, however, between the thin-walled sieve tubes and their companion cells; the latter have few connections with the vascular parenchyma cells. Plasmolytic studies on leaves of plants taken directly from lighted growth chambers gave osmotic potential values of about-18 bars for the companion cells and thin-walled sieve tubes (the companion cell-sieve tube complexes) and about-11 bars for the vascular parenchyma cells. Judging from the distribution of connections between various cell types of the vascular bundles and from the osmotic potential values of those cell types, it appears that sugar is actively accumulated from the apoplast by the companion cell-sieve tube complex, probably across the plasmalemma of the companion cell. The thick-walled sieve tubes, with their close spatial association with the vessels and possession of plasmalemma tubules, may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream. The transverse veins have chlorenchymatous bundle sheaths and commonly contain a single vessel and sieve tube. Parenchymatic elements may or may not be present. Like the thick-walled sieve tubes of the longitudinal bundles, the sieve tubes of the transverse veins have plasmalemma tubules, indicating that they too may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream.  相似文献   

20.
Schoolteachers perceive the pressure-flow hypothesis as difficult to teach. A look at some textbooks in use inthe sixth-form classroom gives the reason why. This article criticises the treatment given to the pressure-flow hypothesis by nine textbooks while showing how this model for long-distance sugar movement in plants canbe explained simply and effectively. Questions of a wider, educational nature are raised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号