首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chrysophycean alga, Ochromonas malhamensis Pringsheim, was shown to synthesize cyclic adenosine 3′:5′-monophosphate (cAMP) and to release it into the culture medium. Cells contained 3 to 3,000 picomoles per gram fresh weight; medium contained up to 20 times the amount in the cells. Putative [32P]cAMP was purified from cultures supplied [32P]phosphate. The compound was identified as [32P]cAMP by co-chromatography with authentic cAMP through 10 serial steps; by chemical deamination at the same rate as authentic cAMP, to a 32P compound with the chromatographic behavior of cIMP; and by its conversion through the action of cyclic nucleotide phosphodiesterase to a 32P compound with the chromatographic behavior of 5′-AMP. A two-step procedure involving chromatography on alumina and on Dowex 50 purified the unlabeled compound from cells or medium sufficiently for it to be assayable by competitive inhibition of binding of [3H]cAMP to cAMP-binding protein (Gilman assay) or by stimulation of cAMP-dependent protein kinase. The activity was destroyed by cyclic nucleotide phosphodiesterase with the same kinetics as authentic cAMP, provided that an endogenous inhibitor of the phosphodiesterase was first removed by an additional purification step.  相似文献   

2.
Cyclic adenosine 3′:5′-monophosphate (cAMP) was extensively purified from rye grass (Lolium multiflorum) endosperm cells grown in axenic suspension culture. The cAMP was purified by neutral alumina and anion and cation exchange chromatography. The cAMP was quantitated by means of a radiochemical saturation assay using a beef heart cAMP-binding protein and also by an assay involving activation of beef heart protein kinase. The cAMP levels found (corrected for recovery of tracer cyclic 3′,5′-[8-3H]AMP included from the point of sample extraction) ranged from 2 to 12 pmol/g fresh weight. The material purified from rye grass cultures was indistinguishable from authentic cAMP with respect to chromatography in two cellulose thin layer systems, behavior on dilution in both the saturation and protein kinase activation assays, and rates of degradation by a mammalian cAMP phosphodiesterase. The cAMP from rye grass cultures was completely degraded by a mammalian cAMP phosphodiesterase, and 1-methyl-3-isobutylxanthine inhibited such degradation. The protein kinase activation and saturation assays gave essentially the same values for the cAMP content of axenic rye grass culture extracts. Material satisfying the above criteria for identity with cAMP was also isolated from the culture medium. The increase observed in medium cAMP levels during culture growth provides evidence for the synthesis and secretion of cAMP by rye grass endosperm cells in suspension culture.  相似文献   

3.
Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2′-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2′-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2′-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B12, and it degraded 2,2′-dithiodibenzoic acid in pure culture when the medium was supplemented with this vitamin. Isolate RM6 also degraded 2,2′-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2′-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2′-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.  相似文献   

4.
Algal heterotrophy is a potentially important considerationin the flow of carbon through aquatic food webs. The physiologicalresponses to organic compound additions under various lightintensities were examined with Poterioochromonas malhamensis,a freshwater chrysophyte with an exceptionally high heterotrophiccapability. P. malhamensis demonstrated a much greater potentialfor heterotrophic growth than for photoautotrophic growth. Whenorganic substrates (glucose, glycerol, or ethanol) were addedto the culture medium, the growth rate of P. malhamensis significantlyincreased while the chlorophyll content cell –1 decreased,even at light intensities saturating for photoautotrophic growth.After an initial decline in chlorophyll production caused byorganic substrate uptake, chlorophyll cell1 increased and theuptake rate of organic substrates decreased, despite the persistenceof a relatively high substrate concentration in the medium.The results are consistent with the production of substance(s)by P. malhamensis that conditioned the culture medium, leadingto a relief of the inhibitory effect of organic substrates onchlorophyll production. (Received October 29, 1990; Accepted May 8, 1991)  相似文献   

5.
A new method for the quantification and characterization of manganese-oxidizing activity by spent culture medium of Leptothrix discophora SS-1 was developed. It is based on the formation of the dye Wurster blue from N,N,N′,N′-Tetramethyl-p-phenylenediamine by oxidized manganese generated in the spent medium. The kinetic parameters thus obtained agreed well with data obtained with other methods. It was also possible to demonstrate iron oxidation by spent culture medium. The kinetics of the process and inhibition by enzyme poisons suggest that iron oxidation is enzymatically catalyzed. Probably two different factors are involved in manganese and iron oxidation.  相似文献   

6.
Changes in intracellular 3′,5′ cyclic AMP (cAMP) concentration regulate the development of natural competence in Haemophilus influenzae. In Escherichia coli, cAMP levels are modulated by a cAMP phosphodiesterase encoded by the cpdA gene. We have used several approaches to demonstrate that the homologous icc gene of H. influenzae encodes a functional cAMP phosphodiesterase and that this gene limits intracellular cAMP and thereby influences competence and other cAMP-dependent processes. In E. coli, expression of cloned icc reduced both cAMP-dependent sugar fermentation and β-galactosidase expression, as has been shown for cpdA. In H. influenzae, an icc null mutation increased cAMP-dependent sugar fermentation and competence development in strains where these processes are limited by mutations reducing cAMP synthesis. When endogenous production of cAMP was eliminated by a cya mutation, an icc strain was 10,000-fold more sensitive to exogenous cAMP than an icc+ strain. The icc strain showed moderately elevated competence under noninducing conditions, as expected, but had subnormal competence increases at onset of stationary phase in rich medium, and on transfer to a nutrient-limited medium, suggesting that excessive cAMP may interfere with induction. Consistent with this finding, a cya strain cultured in 1 mM cAMP failed to develop maximal competence on transfer to inducing conditions. Thus, by limiting cAMP levels, the H. influenzae cAMP phosphodiesterase may coordinate its responses to nutritional stress, ensuring optimal competence development.  相似文献   

7.
Sexual reproduction in Gibberella zeae (Fusarium roseum) is regulated by the fungal sex hormone zearalenone, which is known to be synthesized only by species of Fusarium. The presence of cyclic adenosine 3′,5′-monophosphate (cAMP) in mycelium of this fungus has been confirmed by analyses with thin-layer and gas-liquid chromatography, fluorescent properties, ultraviolet absorption, competitive protein-binding tests, and degradation by cyclic phosphodies-terase. cAMP but not cyclic guanosine monophosphate increased both the number of perithecia formed and the incorporation of [1-14C]acetate into zearalenone. It is proposed that cAMP stimulates the synthesis of zearalenone which then exerts its effect directly or indirectly on formation of perithecia.  相似文献   

8.
From the protonema of the moss Funaria hygrometrica (L.) Sibth, a factor indistinguishable from cyclic adenosine 3′:5′-monophosphate (cAMP) has been isolated. The factor stimulated the activity of protein kinase from rabbit skeletal muscle and co-chromatographed with authentic cAMP in two solvent systems. Its ability to stimulate protein kinase activity was completely abolished by 3′:5′-cyclic nucleotide phosphodiesterase, the rate of inactivation being similar to that of authentic cAMP. Based on these properties, this factor is identified as 3′,5′-cAMP. Cyclic AMP could be readily removed from the cells and washing the cells with water reduced the endogenous level of cAMP by 2- to 3-fold. A comparison of cAMP levels by protein kinase and Gilman assays was made. The intracellular levels determined by protein kinase assay were about 7-fold lower than the values obtained by Gilman assay. This discrepancy was due to the presence of unidentified compounds which were completely degraded by 3′:5′-cyclic nucleotide phosphodiesterase. Although these displaced labeled cAMP in the Gilman assay, they did not stimulate the protein kinase activity. The protonema may contain cyclic nucleotides other than cAMP; these will not be detected in the protein kinase assay due to the specificity of this reaction. The crude extracts were found to be unsuitable for assaying cAMP by either method.  相似文献   

9.
Glucose uptake by peripheral tissues such as skeletal muscles and adipocytes is important in the maintenance of glucose homeostasis. We previously demonstrated that P2Y6 receptor (P2Y6R) agonists protect pancreatic islet cells from apoptosis and stimulate glucose-dependent insulin release. Here, we investigated the effects of P2Y6R activation on glucose uptake in insulin target tissues. An agonist of the P2Y6R, P1-(5′-uridine)-P3-(5′-N4-methoxycytidine)-triphosphate (MRS2957), significantly increased the uptake of [3H]2-deoxyglucose in mouse C2C12 myotubes and 3T3-L1 adipocytes, and this stimulation was significantly decreased by a selective P2Y6R antagonist N,N″-1,4-butanediyl-bis[N′-(3-isothiocyanatophenyl)thiourea] (MRS2578). Pre-incubation with Compound C (an inhibitor of 5′-AMP-activated protein kinase, AMPK), or AMPK siRNA abolished the stimulatory effect of MRS2957 on glucose uptake. Also, MRS2957 (60 min incubation) increased recruitment of the facilitated glucose transporter-4 (GLUT4) to the cell membrane, which was blocked by MRS2578. Treatment of C2C12 myotubes with MRS2957 induced significant phosphorylation of AMPK, which increase GLUT4 expression through histone deacetylase (HDAC)5 signaling. Glucose uptake in primary mouse adipocytes from wild-type mice was stimulated upon P2Y6R activation by either MRS2957 or native agonist UDP, and the P2Y6R effect was antagonized by MRS2578. However, in adipocytes from P2Y6R-knockout mice P2Y6R agonists had no effect on glucose uptake, and there was no change in the glucose uptake by insulin. Our results indicate that the P2Y6R promotes glucose metabolism in peripheral tissues, which may be mediated through AMPK signaling.  相似文献   

10.
Production of carbohydrases by Alternaria solani is inhibited by glucose under low growth conditions. In an enriched medium, glucose has little effect on the production of polygalacturonase and cellulase while it still suppresses production of β-glucosidase. Low levels of all three enzymes were produced in the absence of their respective substrates. Such regulation has been found with many organisms. However, far greater production of these carbohydrases occurred with additions of adenosine phosphates to the growth media. Highest stimulation of enzyme production was by adenosine 5′-phosphate. Adenosine 5′-triphosphate and cyclic 3′, 5′-adenosine monophosphate gave lesser amounts. Starvation appears to induce production of extracellular carbohydrases and adenosine 5′-phosphate may have a role in the starvation process.  相似文献   

11.
A strain of Fusarium solani isolated from soil by enrichment techniques used propanil (3′, 4′-dichloropropionanilide) as a sole source of organic carbon and energy for growth in pure culture. The primary product of the transformation of propanil by F. solani was isolated and identified as 3,4-dichloroaniline (DCA). This compound accumulated in the medium to a level (80 μg/ml) which stopped further herbicide utilization. Herbicide utilization by F. solani was influenced by various environmental and nutritional factors. It was more sensitive to acid than alkaline pH. Added glucose and yeast extract increased the rate of propanil decomposition, and the reduced aeration retarded growth of the fungus and herbicide utilization. The growth of F. solani on propionate was inhibited by added DCA.  相似文献   

12.
A strain of Fusarium solani isolated from soil by enrichment techniques used propanil (3′, 4′-dichloropropionanilide) as a sole source of organic carbon and energy for growth in pure culture. The primary product of the transformation of propanil by F. solani was isolated and identified as 3,4-dichloroaniline (DCA). This compound accumulated in the medium to a level (80 μg/ml) which stopped further herbicide utilization. Herbicide utilization by F. solani was influenced by various environmental and nutritional factors. It was more sensitive to acid than alkaline pH. Added glucose and yeast extract increased the rate of propanil decomposition, and the reduced aeration retarded growth of the fungus and herbicide utilization. The growth of F. solani on propionate was inhibited by added DCA.  相似文献   

13.
Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3′-OH and 5′-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3′-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3′-S-phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3′-S-phosphorothiolate-modified ptRNA carrying a 7 nt 5′-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5′-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn2+ or Cd2+. To suppress aberrant cleavage, we also constructed a 3′-S-phosphorothiolate-modified ptRNA with a 1 nt 5′-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3′-S-phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.  相似文献   

14.
Two methods were used to compare the biodegradation of six polychlorinated biphenyl (PCB) congeners by 12 white rot fungi. Four fungi were found to be more active than Phanerochaete chrysosporium ATCC 24725. Biodegradation of the following congeners was monitored by gas chromatography: 2,3-dichlorobiphenyl, 4,4′-dichlorobiphenyl, 2,4′,5-trichlorobiphenyl (2,4′,5-TCB), 2,2′,4,4′-tetrachlorobiphenyl, 2,2′,5,5′-tetrachlorobiphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl. The congener tested for mineralization was 2,4′,5-[U-14C]TCB. Culture supernatants were also assayed for lignin peroxidase and manganese peroxidase activities. Of the fungi tested, two strains of Bjerkandera adusta (UAMH 8258 and UAMH 7308), one strain of Pleurotus ostreatus (UAMH 7964), and Trametes versicolor UAMH 8272 gave the highest biodegradation and mineralization. P. chrysosporium ATCC 24725, a strain frequently used in studies of PCB degradation, gave the lowest mineralization and biodegradation activities of the 12 fungi reported here. Low but detectable levels of lignin peroxidase and manganese peroxidase activity were present in culture supernatants, but no correlation was observed among any combination of PCB congener biodegradation, mineralization, and lignin peroxidase or manganese peroxidase activity. With the exception of P. chrysosporium, congener loss ranged from 40 to 96%; however, these values varied due to nonspecific congener binding to fungal biomass and glassware. Mineralization was much lower, ≤11%, because it measures a complete oxidation of at least part of the congener molecule but the results were more consistent and therefore more reliable in assessment of PCB biodegradation.  相似文献   

15.
Mechano-electrical transduction (MET) in the stereocilia of outer hair cells (OHCs) was studied in newborn Wistar rats using scanning electron microscopy to investigate the stereociliar cross-links, Nomarski laser differential interferometry to investigate stereociliar stiffness and by testing the functionality of the MET channels by recording the entry of fluorescent dye, FM1-43, into stereocilia. Preparations were taken from rats on their day of birth (P0) or 1–4 days later (P1–P4). Hair bundles developed from the base to the apex and from the inner to outer OHC rows. MET channel responses were detected in apical coil OHCs on P1. To study the possible recovery of MET after disrupting the cross-links, the same investigations were performed after the application of Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) and allowing the treated samples to recover in culture medium for 0–20 h. We found that the structure and function were abolished by BAPTA. In P0–P1 samples, structural recovery was complete and the open probability of MET channels reached control values. In P3–P4 samples, complete recovery only occurred in OHCs of the outermost row. Although our results demonstrate an enormous recovery potential of OHCs in the postnatal period, the structural component restricts the potential for therapy in patients.  相似文献   

16.
The carbonate radical anion is a biologically important one-electron oxidant that can directly abstract an electron from guanine, the most easily oxidizable DNA base. Oxidation of the 5′-d(CCTACGCTACC) sequence by photochemically generated CO3·− radicals in low steady-state concentrations relevant to biological processes results in the formation of spiroiminodihydantoin diastereomers and a previously unknown lesion. The latter was excised from the oxidized oligonucleotides by enzymatic digestion with nuclease P1 and alkaline phosphatase and identified by LC-MS/MS as an unusual intrastrand cross-link between guanine and thymine. In order to further characterize the structure of this lesion, 5′-d(GpCpT) was exposed to CO3·− radicals, and the cyclic nature of the 5′-d(G*pCpT*) cross-link in which the guanine C8-atom is bound to the thymine N3-atom was confirmed by LC-MS/MS, 1D and 2D NMR studies. The effect of bridging C bases on the cross-link formation was studied in the series of 5′-d(GpCnpT) and 5′-d(TpCnpG) sequences with n = 0, 1, 2 and 3. Formation of the G*-T* cross-links is most efficient in the case of 5′-d(GpCpT). Cross-link formation (n = 0) was also observed in double-stranded DNA molecules derived from the self-complementary 5′-d(TTACGTACGTAA) sequence following exposure to CO3·− radicals and enzymatic excision of the 5′-d(G*pT*) product.  相似文献   

17.
Starting with a strain of Bacillus cereus excreting about 40-fold more β-amylase than does the original wild-type strain, we isolated, after mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine, a strain designated BQ10-S1 SpoIII which showed under optimal conditions a further 5.5-fold increase in β-amylase activity. The amylase production of this strain was observed to increase in the presence of 0.5% glucose or 1% maltose and, more markedly, in the presence of 2% soluble starch in the culture medium. The enzyme produced by this strain was immunologically identical to the wild-type enzyme, suggesting that either the copy number of the gene or the efficiency of enzyme synthesis from it, or both, are altered in this strain.  相似文献   

18.
19.
The present study tested whether exposure of enterotoxigenic Escherichia coli (ETEC) to glucose at different concentrations in the media results in increased bacterial adherence to host cells through increased heat-labile enterotoxin (LT) production, thereby suggesting the effects are physiological. Porcine-origin ETEC strains grown in Casamino acid yeast extract medium containing different concentrations of glucose were washed and inoculated onto IPEC-J2 porcine intestinal epithelial cells to test for effects on adherence and host cell cAMP concentrations. Consistent with previous studies, all LT+ strains had higher ETEC adherence to IPEC-J2 cells than did LT strains. Adherence of the LT but not the LT+ strains was increased by pre-incubating the IPEC-J2 cells with LT and decreased by co-incubation with GM1 ganglioside in a dose-dependent manner (P<0.05). To determine whether the glucose concentration of the cell culture media has an effect on adherence, IPEC-J2 cells were inoculated with LT+ or LT strains in cell culture media containing a final glucose concentration of 0, 0.25, 0.5, 1.0 or 2.0%, and incubated for 4 h. Only media containing 0.25% glucose resulted in increased adherence and cAMP levels, and this was limited to IPEC-J2 cells inoculated with LT+ strains. This study supports the hypothesis that glucose, at a concentration optimal for LT expression, enhances bacterial adherence through the promotion of LT production. Hence, these results establish the physiological relevance of the effects of glucose on LT production and provide a basis for how glucose intake may influence the severity of ETEC infection.  相似文献   

20.
Cyclic 3′5′ adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号