共查询到14条相似文献,搜索用时 0 毫秒
1.
Shoot elongation in many coniferous species is predetermined during bud formation the year before the shoot extends. This implies that formation of the primordial shoot within the bud is the primary event in annual shoot growth. Hormonal factors regulating bud formation are consequently of utmost importance. We followed the levels of the endogenous cytokinins zeatin riboside (ZR) and isopentenyladenosine (iPA) in terminal buds, whorl buds and lower lateral buds of the uppermost current-year whorl shoots of 15- to 20-year-old trees of Norway spruce [ Picea abies (L.) Karst.] from June to September. Cytokinins were isolated with affinity chromatography columns, purified by high performance liquid chromatography, and quantified by ELISA. The level of ZR was low in June but increased gradually in all buds until September. Throughout the measurement period, the ZR level was highest in terminal buds and lowest in the scattered lateral, buds, with the whorl buds intermediate. The level of iPA peaked in July and decreased later without any consistent differences among the three classes of buds. The development of different kinds of buds was followed by scanning electron microscopy. We found that bud growth was greatest during August and September. The final size of primordial shoots within the buds varied considerably and the weight of the terminal bud was three times that of the whorl buds and more than five times that of the other lateral buds.
We conclude that the increase in ZR level during the period of active bud development is indicative of the importance of cytokinin for this process. Furthermore, the positive correlation between the level of ZR and bud growth during the period of predetermination of next year's branch growth suggests that this hormone indirectly controls the form of single branches in the spruce tree. 相似文献
We conclude that the increase in ZR level during the period of active bud development is indicative of the importance of cytokinin for this process. Furthermore, the positive correlation between the level of ZR and bud growth during the period of predetermination of next year's branch growth suggests that this hormone indirectly controls the form of single branches in the spruce tree. 相似文献
2.
Relations between cytokinin level, bud development and apical control in Norway spruce, Picea abies 总被引:1,自引:0,他引:1
Marie Bollmark Hao-Jie Chen Thomas Moritz Lennart Eliasson 《Physiologia plantarum》1995,95(4):563-568
In conifers such as Norway spruce, the extent of shoot growth is predetermined by the size and number of embryonal organs of the buds laid down the previous year. As it is known that cytokinins have a key role in bud development a possible hypothesis is that the level of cytokinin in the buds during their formation determines their size and complexity. As a first step to test this hypothesis we compared cytokinin levels in buds of different size of annual shoots from 15- to 20-year-old trees of Picea abies (L.) Karst. Apical buds from the leaders, and from branches in lower parts of the trees, were collected in April, July and August. The difference in size of the buds and the shoots growing from them was considerable in these three positions. Extracts were purified by immunoaffinity columns, and the retained compounds were separated by high-performance liquid chromatography (HPLC). Quantification was made by enzyme-linked immunosorbent assay (ELISA), and the accuracy of this method was checked by measurements with liquid chromatography-mass spectrometry (LC-MS) and UV absorption. Zeatin riboside (ZR) was the most abundant cytokinin, but isopentenyladenosine (iPA) was also present in all samples. The large apical bud of the leader contained much higher cytokinin concentrations than the considerably smaller buds from lower positions, and during the period of secondary growth in July, similar relationships were found for annual stem tissue from different positions. The possible role of ZR as a controlling factor in bud development and apical control is discussed. Our conclusion is that the level of zeatin-type cytokinins appears to play an important role in the establishment of differences in bud size and, thereby, the architecture of the tree crown. 相似文献
3.
Ethylene accelerates the breakdown of cytokinins and thereby stimulates rooting in Norway spruce hypocotyl cuttings 总被引:2,自引:0,他引:2
Cuttings were taken from 4-week-old seedlings of Norway spruce ( Picea abies L. Karst.) raised at two different irradiation levels. Rooting experiments showed that root formation was increased by the ethylene formed by adding 1-aminocyclopropane-1-carboxylic acid ACC or Ethrel, especially in the slowly rooting cuttings grown under high light (HL). Cobaltousion. an ethylene synthesis inhibitor, delayed rooting, especially in the easily rooted cuttings grown under low light (LL).
Compounds isolated from the cuttings using immunoaffinity chromatography, on a column with antibodies against cytokinins, and separated by HPLC decreased in amount during the first week of the rooting period. An increase in ethylene production accelerated this process, especially in cuttings grown under HL, whereas cobaltous ion delayed it. We suggest that ethylene stimulates rooting by enhancing the degradation of cytokinins. 相似文献
Compounds isolated from the cuttings using immunoaffinity chromatography, on a column with antibodies against cytokinins, and separated by HPLC decreased in amount during the first week of the rooting period. An increase in ethylene production accelerated this process, especially in cuttings grown under HL, whereas cobaltous ion delayed it. We suggest that ethylene stimulates rooting by enhancing the degradation of cytokinins. 相似文献
4.
Somatic embryogenesis is the only method with the potential for industrial scale clonal propagation of conifers. Implementation of the method has so far been hampered by the extensive manual labor required for development of the somatic embryos into plants. The utilization of bioreactors is limited since the somatic embryos will not mature and germinate under liquid culture conditions. The negative effect on mature embryo yields from liquid culture conditions has been previously described. We have described the negative effects of shear stress on the development of early stage somatic embryos (proembryogenic masses; PEMs) at shear stresses of 0.086 and 0.14 N/m2. In the present study, additional flow rates were studied to determine the effects of shear stress at lower rates resembling shear stress in a suspension culture flask. The results showed that shear stress at 0.009, 0.014, and 0.029 N/m2 inhibited the PEM expansions comparing with the control group without shear stress. This study also provides validation for the cross‐correlation method previously developed to show the effect of shear stress on early stage embryo suspensor cell formation and polarization. Furthermore, shear stress was shown to positively affect the uptake of water into the cells. The results indicate that the plasmolyzing effect from macromolecules added to liquid culture medium to stimulate maturation of the embryos are affected by liquid culture conditions and thus can affect the conversion of PEMs into mature somatic embryos. Bioeng. 2011; 108:1089–1099. © 2010 Wiley Periodicals, Inc. 相似文献
5.
Embryos of Picea abies (L.) Karst were pulse-treated with water or cytokinin for 2 h and then cultured on medium lacking cytokinin. Adventitious buds developed on cytokinin-treated embryos, but not on water-treated embryos. The general appearance and the surface morphology were similar on water and BA (benzyladenine)-treated embryos after 3 days. The epidermal cells were elongating after 6 days on water-treated embryos, while they were dividing on cytokinin-treated embryos. Furthermore, the cells surrounding the stomata had started to proliferate on BA-treated embryos. This was the first micromorphological sign of bud initiation. During the second week prominent meristemoids developed from these cells. A stoma was observed on the top of each meristemoid. The variation in developmental pattern of meristemoids among different embryos as well as within each embryo was small. However, during the subsequent development of bud primordia and buds, the morphological variation was significant. The meristemoids continued to develop into cone-shaped bud primordia, which successively changed shape during the transition to adventitious buds. The epidermal cells divided and the epidermis did not rupture during the formation of adventitious bud primordia. The epidermis was identified as the protoderm of the bud primordium. 相似文献
6.
The primary growth of trees may be studied either by following their development over time, which is costly and requires long-term monitoring, or by a posteriori growth analyses. Trees in temperate forests show rhythmic growth, which is characterised by morphological or anatomical markers. The study described here focuses on the pith of trees as an internal marker for the retrospective analysis of primary growth. Changes in pith size and density were quantified along a stem of Norway spruce [Picea abies (L.) Karst.] with high spatial resolution. The results showed that pith would appear to be a reliable marker of the annual growth rhythm even in the presence of polycyclism. Annual shoot limits were characterised by reductions in pith size associated, at the same time, with increases in pith density. In addition, pith size may provide information about tree ontogeny. The start of the competition with neighbouring trees was very likely responsible for an overall decrease in pith size. Regarding high frequency variations, pith size appeared to be less sensitive to local environmental fluctuations like climate than other studied variables such as annual shoot length and annual ring width. Finally, X-ray computed tomography proved to be a very promising method for the non-destructive detection of annual shoot limits in stems based on longitudinal changes in pith density, as demonstrated in a log of Norway spruce.
相似文献
Yves CaraglioEmail: |
7.
8.
In northern boreal forests, the diversity of ectomycorrhizal (ECM) species is much greater than that of their host trees. This field study investigated the role of individual trees in shaping the ECM community. We compared ECM communities of eight Norway spruce (Picea abies) clones planted in a clear-cut area in 1994 with a randomized block design. In 2003, the ECM fungi were identified from randomly sampled root tips using denaturing gradient gel electrophoresis (DGGE) and rDNA internal transcribed spacer (ITS) sequence similarity. ECM diversity varied among clone groups, showing twofold growth differences. Moreover, according to detrended correspondence analysis (DCA), ECM community structure varied not only among but also within slow-growing or fast-growing clones. Results suggest that ECM diversity and community structure are related to the growth rate or size of the host. A direct or indirect influence of host genotype was also observed, and we therefore suggest that individual trees are partly responsible for the high diversity and patchy distribution of ECM communities in boreal forests. 相似文献
9.
Winter hardening of first-year black spruce [ Picea mariana (Mill.) B.S.P.] seedlings was studied by assessing a number of morphological and physiological changes under three hardening regimes: 1) early removal (ER), in which seedlings were exposed to natural daylengths and low ambient temperatures outside. 2) extended greenhouse culture (EG), in which seedlings were exposed to natural daylengths and warm temperatures, and 3) short day (SD), in which seedlings were exposed to short daylengths and low ambient temperatures outside. Measurements included needle primordia initiation, embryonic shoot volume, terminal bud mitotic index, embryonic shoot average cell volume, and shoot tip frost hardiness. EG seedlings formed buds containing 4 times as many needle primordia as ER stock. Embryonic shoot volume increased with number of needle primordia initiated, until late in the hardening period, when significant reductions in meristem volumes of SD and EG stock were observed. Frost hardiness increased sooner in seedlings which set bud in response to short days, but SD treatment did not result in significantly greater frost hardiness at the end of the trial. Frost hardiness was correlated with mitotic index of the embryonic shoot. Cell size in the embryonic shoot declined in seedlings of all treatments during hardening, however, EG seedlings had significantly lower cell volumes by the end of the trial in comparison to ER and SD seedlings. 相似文献
10.
Mohammed Qamaruddin Ingegerd Dormling Inger Ekberg Gösta Erikason Elisabeth Tillberg 《Physiologia plantarum》1993,87(2):203-210
Seedlings of a southern (Romanian) and a northern (Swedish) population of Picea abies were cultivated under continuous light and 20°C for 10 weeks. To arrest growth, induce terminal bud dormancy and promote frost tolerance the seedlings were then exposed to 16 h nights for 12 weeks, with gradually lower temperature during the last 6 weeks. Samples for estimating the abscisic acid content of the needles were taken just before the onset of the night treatment, at day 3 of the treatment, and then with one, and later 2 week, intervals. From the second week onwards (third week for frost tolerance) bud dormancy and frost tolerance were assessed at the same time as abscisic acid (ABA) determinations. Phosphate-buffered saline extracts were purified on mini-columns (in some cases immunoaffinity colums) and quantified by HPLC. The degree of dormancy was estimated by transferring the seedlings to growth conditions and determining the number of days until growth was resumed. The frost tolerance of the needles exposed to –10°C and –20°C was classified in 6 classes. The frost tolerance of the terminal buds was estimated as the number of seedlings that showed some growth after 6 weeks in growth conditions. The night treatment rapidly induced terminal bud dormancy in both populations, but the release of dormancy occurred earlier in the northern population. The needles and the terminal buds became highly frost tolerant more rapidly in the northern than in the southern population and before the temperature decrease. The degree of dormancy began to decline before full frost tolerance was obtained in the southern population and this decline continued in both populations, while frost tolerance remained at a high level. The southern population showed a transient peak in ABA content at day 3. Although the ABA content of the northern population was lower than in the southern before the 16-h night treatment, it increased in the northern population during the treatment period, in particular after the temperature decrease. 相似文献
11.
M. R. HOLLAND P. W. MUELLER A. J. RUTTER P. J. A. SHAW † 《Plant, cell & environment》1995,18(3):227-236
Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Sitka spruce (Picea sitchensis Bong. Carr.) were planted as 2-year-old seedlings in an open-air fumigation facility at Liphook in southern England in March 1985. The soil was a humoferric podzol of pH 4. SO2 fumigation began in May 1987 and continued until December 1990. Long-term mean SO2 concentrations were 4,13 and 22 nmol mo?1. Three plots, one at each SO2 level, were also exposed to O3 at an average of 1–3.times the ambient level. O3 fumigation ran from March to December 1988, May to December 1989 and February to December 1990. Each species reacted differently to treatment. Scots pine showed no growth response to either pollutant, although other work on the site demonstrated a number of deleterious effects of SO2 on this species, including increased leaf loss and foliar injury. Stem basal diameter growth of Norway spruce was depressed in SO2-treated plots. In contrast, extension growth of shoots of Sitka spruce increased in SO2-treated plots, in apparent response to codeposition of NH3-N. However, diameter growth of Sitka spruce main stems did not increase. No effects of O3 on growth were recorded for any species. 相似文献
12.
13.
Ernst van der Maaten Andreas Hamann Marieke van der Maaten‐Theunissen Aldo Bergsma Geerten Hengeveld Ron van Lammeren Frits Mohren Gert‐Jan Nabuurs Renske Terhürne Frank Sterck 《Ecology and evolution》2017,7(8):2585-2594
Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree‐ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate‐based habitat suitability with volume measurements from ~50‐year‐old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree‐ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree‐ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as ?.31. We conclude that tree responses to projected climate change are highly site‐specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales. 相似文献