首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
Phosphorus (P) deficiency in soil is a major constraint for agricultural production worldwide. Despite this, most soils contain significant amounts of total soil P that occurs in inorganic and organic fractions and accumulates with phosphorus fertilization. A major component of soil organic phosphorus occurs as phytate. We show that when grown in agar under sterile conditions, Arabidopsis thaliana plants are able to obtain phosphorus from a range of organic phosphorus substrates that would be expected to occur in soil, but have only limited ability to obtain phosphorus directly from phytate. In wild-type plants, phytase constituted less than 0.8% of the total acid phosphomonoesterase activity of root extracts and was not detectable as an extracellular enzyme. By comparison, the growth and phosphorus nutrition of Arabidopsis plants supplied with phytate was improved significantly when the phytase gene (phyA) from Aspergillus niger was introduced. The Aspergillus phytase was only effective when secreted as an extracellular enzyme by inclusion of the signal peptide sequence from the carrot extensin (ex) gene. A 20-fold increase in total root phytase activity in transgenic lines expressing ex::phyA resulted in improved phosphorus nutrition, such that the growth and phosphorus content of the plants was equivalent to control plants supplied with inorganic phosphate. These results show that extracellular phytase activity of plant roots is a significant factor in the utilization of phosphorus from phytate and indicate that opportunity exists for using gene technology to improve the ability of plants to utilize accumulated forms of soil organic phosphorus.  相似文献   

3.
Transgenic Trifolium subterraneum expressing a phytase gene (phyA) from Aspergillus niger were generated. Five independently transformed lines showed an average 77‐fold increase in exuded phytase activity in comparison with null segregant and wild‐type controls. Unlike other phosphatases, exuded phytase activity was unaffected by P supply, verifying the constitutive expression of phyA. Transgenic T. subterraneum grown in agar with P supplied as phytate, took up 1.3‐ to 3.6‐fold more P than controls and had equivalent P uptake to plants supplied with orthophosphate. This unique phenotype was compromised when the plants were grown in soil. None of the five lines showed increased shoot biomass or total P uptake in an unfertilized, low‐P soil taken from under permanent pasture. With addition of P, one of the five transgenic lines had consistently greater P nutrition compared with control plants. Despite variable growth and P nutrition responses, P uptake per root length was on average greater for transgenic lines. Exudation of phytase by transgenic T. subterraneum allowed utilization of P from phytate in non‐sorbing, sterile laboratory media, but was less effective when plants were grown in soil. Release of extracellular phytase is therefore not the only requirement for the acquisition of P from endogenous soil phytate by plants.  相似文献   

4.
Transgenic Nicotiana tabacum plants expressing a chimeric phytase gene (ex::phyA) from the soil fungus Aspergillus niger were generated. Three independently transformed lines showed increased extracellular phytase activity compared with a vector control and wild-type plants, both of which had no detectable extracellular phytase. Transgenic N. tabacum plants grown in sterile agar supplied with phosphorus (P) as phytate accumulated 3.7-fold more P than vector control plants. Despite this, the expression of ex::phyA in plants did not lead to an improved accumulation of P from two unamended P-deficient soils. However, when soils were amended with either phytate or phosphate and lime, transgenic plants accumulated up to 52% more P than controls. Positive responses by transgenic plants were, in some instances, coincident with a putative increase in soil phytate. We conclude that the development of plants that exude phytase to the soil may not ensure improved plant P nutrition, as the availability of phytate in the soil also appears to be critical. Nevertheless, if plants that express ex::phyA are combined with soil amendments that promote the availability of phytate, there is the potential to enhance the P nutrition of crop plants and to improve the efficiency of P fertilizer use in agricultural systems.  相似文献   

5.
Wheat seedlings exhibited a differential ability to utilize P from a range of organic P substrates when grown in agar culture under sterile conditions. Plants showed limited ability to obtain P from inositol hexaphosphate (IHP), whereas other monoester substrates such as glucose 1‐phosphate (G1P), were equivalent sources of P for plant growth as compared with inorganic phosphate (Pi). Poor utilization of IHP was exemplified by significantly lower rates of dry matter accumulation and reduced P content of tissues, which were generally not significantly different to control plants that were grown in the absence of added P. The inability of wheat seedlings to obtain P from IHP was not associated with poor substrate availability but was due to either insufficient root phytase activity or inappropriate localization of phytase within root tissues. Phytase activities of 4 and 24 mU g ? 1 root fresh weight (FW) were determined for crude root extracts prepared from plants that were grown with either adequate P or under deficient conditions, respectively. Similar levels of phytase activity (approximately 12 mU g ? 1 FW) were observed in assays using intact roots, although no secreted activity was detected. By comparison, a secreted acid phosphomonoesterase activity was observed, and activities of between 466 and 1029 mU phosphomonoesterase g ? 1 root FW were measured for intact roots. On the basis of the differences in enzyme activity, and the observed differences in the ability of wheat seedlings to utilize G1P and IHP, it is evident that low intrinsic levels of phytase activity in wheat roots is a critical factor that limits the ability of wheat to obtain P from phytate when supplied in agar under non‐limiting conditions. This hypothesis was further supported by the observation that the ability of wheat to obtain P from IHP was significantly improved when the seedlings were inoculated with a soil bacterium (Pseudomonas sp. strain CCAR59) that possesses phytase activity.  相似文献   

6.
Transgenic cotton with an increased level of phytase activity was generated from cotton (Gossypium hirsutum L.) cv. ND94-7 by subjecting shoot-apex explants to particle bombardment. These tissues were transformed with plasmid pC-KSA2300 carrying a selectable marker (for kanamycin) and a target gene (phytase, or phyA, from Aspergillus ficuum). Primary plants were regenerated in a medium containing 75 mg l−1 kanamycin. Of 1,534 shoot apices, 52 (3.4%) survived on this selection medium. Southern and Northern blot analyses confirmed that phyA was stably integrated and expressed in those primary transgenics. The progenies of the primary transgenic plants were found to have a 3.1- to 3.2-fold increase in root extracellular phytase activity, resulting in improved phosphorus (P) nutrition. Growth also was enhanced when they were supplied with phytate, and their P content was equivalent to that of wildtype plants supplied with inorganic phosphate. These results demonstrate that the expression of phyA in cotton plants improves their ability to utilize organic P in response to a deficiency.  相似文献   

7.
利用转入枯草芽孢杆菌植酸酶基因的不同烟草株系,分别在无菌培养基、砂培和土培试验中研究了转植酸酶基因烟草对植酸磷的吸收和利用.结果表明,在无菌培养基试验中,所有转植酸酶基因烟草对植酸磷的吸收利用能力均显著高于野生型,其生物量比野生型提高了3.6~10.7倍,总磷吸收量提高了2.2~4.6倍;在沙培和土培中,转植酸酶基因烟草对植酸磷的吸收利用与野生型相比,生物量和总磷吸收量差异不显著.这说明转植酸酶基因在无菌条件下可以提高植物吸收利用植酸磷的能力,但是在自然条件下,由于微生物分解或矿物固定等原因,其作用不稳定,需要进一步研究克服土壤中的限制因素,才能使转基因植物充分发挥作用.  相似文献   

8.
For biochemical modification of the root-soil interface, the engineered secretion of stable enzymes from trichoblasts (= root hair bearing rhizodermal cells) is proposed. As a reporter activity, we chose to express a synthetic gene encoding a secretory phytase (PHY) directed by a trichoblast-specific promoter in root hair cells of the crop plant potato. Transgenic plants produced and secreted phytase in sufficient amounts to release phosphate from phytate in liquid medium. When grown in an unsterile substrate containing phytate, transgenic plants accumulated 40% more P in leaves than wild-type plants. The improved P nutrition driven by trichoblast-targeted expression and subsequent secretion of PHY illustrates the potential of using trichoblast-targeted expression of suitable enzymes for future applications in plant nutrition, phytoremediation and molecular farming.  相似文献   

9.
Phytate, the major organic phosphorus in soil, is not readily available to plants as a source of phosphorus (P). It is either complexed with cations or adsorbed to various soil components. The present study was carried out to investigate the extracellular phytase activities of tobacco (Nicotiana tabacum variety GeXin No.1) and its ability to assimilate external phytate-P. Whereas phytase activities in roots, shoots and growth media of Pi-fed 14-day-old seedlings were only 1.3–4.9% of total acid phosphatase (APase) activities, P starvation triggered an increase in phytase secretion up to 914.9 mU mg−1 protein, equivalent to 18.2% of total APase activities. Much of the extracellular phytase activities were found to be root-associated than root-released. The plants were not able to utilize phytate adsorbed to sand, except when insoluble phytate salts were preformed with Mg2+ and Ca2+ ions for supplementation. Tobacco grew better in sand supplemented with Mg-phytate salts (31.9 mg dry weight plant−1; 0.68% w/w P concentration) than that with Ca-phytate salts (9.5 mg plant−1; 0.42%), presumably due to its higher solubility. We conclude that insolubility of soil phytate is the major constrain for its assimilation. Improving solubility of soil phytate, for example, by enhancement of citrate secretion, may be a feasible approach to improve soil phytate assimilation.  相似文献   

10.
We have developed transgenic mouse models to determine whether endogenous expression of phytase transgenes in the digestive tract of monogastric animals can increase the bioavailability of dietary phytate, a major but indigestible form of dietary phosphorus. We constructed phytase transgenes composed of the appA phytase gene from Escherichia coli regulated for expression in salivary glands by the rat R15 proline-rich protein promoter or by the mouse parotid secretory protein promoter. Transgenic phytase is highly expressed in the parotid salivary glands and secreted in saliva as an enzymatically active 55 kDa glycosylated protein. Expression of salivary phytase reduces fecal phosphorus by 11%. These results suggest that the introduction of salivary phytase transgenes into monogastric farm animals offers a promising biological approach to relieving the requirement for dietary phosphate supplements and to reducing phosphorus pollution from animal agriculture.  相似文献   

11.
Acid phosphatase activity in phosphorus-deficient white lupin roots   总被引:15,自引:0,他引:15  
White lupin ( Lupinus albus L.) develops proteoid roots when grown in phosphorus (P)-deficient conditions. These short, lateral, densely clustered roots are adapted to increase P availability. Previous studies from our laboratory have shown proteoid roots have higher rates of non-photosynthetic carbon fixation than normal roots and altered metabolism to support organic acid exudation, which serves to solubilize P in the rhizosphere. The present work indicates that proteoid roots possess additional adaptations for increasing P availability and possibly for conserving P in the plant. Roots from P-deficient (–P) plants had significantly greater acid phosphatase activity in both root extracts and root exudates than comparable samples from P-sufficient (+P) plants beginning 10 d after emergence. The increase in activity in –P plants was most pronounced in the proteoid regions. In contrast, no induction of phytase activity was found in –P plants compared to +P plants. The number of proteoid roots present was not affected by the source of phosphorus supplied, whether organic or inorganic forms. Adding molybdate to the roots increased the number of proteoid roots in plants supplied with organic P, but not inorganic P. Increased acid phosphatase activity was detected in root exudates in the presence of organic P sources. Native-polyacrylamide gel electrophoresis demonstrated that under P-deficient conditions, a unique isoform of acid phosphatase was induced between 10 and 12 d after emergence. This isoform was found not only within the root, but it comprised the major form exuded from proteoid roots of –P plants. The fact that exudation of proteoid-root-specific acid phosphatase coincides with proteoid root development and increased exudation of organic acids indicates that white lupin has several coordinated adaptive strategies to P-deficient conditions.  相似文献   

12.
In this study, we have investigated the plant growth promoting effect of Bacillus mucilaginosus strain D4B1, a rhizosphere soil organism, and its transgenic strain NKTS-3 on tobacco planting. The transgenic strain contains a phytase expression cassette that can express high active phytase extracellularly and hydrolyze phytate in the soil to liberate inorganic phosphorus for the growth of tobacco plants. Greenhouse study and field experiments showed that both wild-type B. mucilaginosus and the transgenic strain could promote tobacco plant growth. Moreover, the transgenic strain promoted tobacco plant growth (235% more than control in pot experiments and 125% more than control in field experiments) was higher than the wild-type B. mucilaginosus (183% more than control in pot experiments and 108% more than control in field experiments). In addition, the inoculation with transgenic rhizobacteria could significantly improve root acquisition of phosphorus and increase the phosphorus content of the plant.  相似文献   

13.
1. The external mycelia of the ectomycorrhizal fungi Thelephora terrestris and Suillus luteus , associated with Pinus sylvestris roots, exhibited a substantial extracellular acid phosphatase activity. The activity was positively correlated with the ergosterol concentration in the growth substratum and decreased with an increasing P nutrition.
2. The pioneer species T. terrestris grew best at a high Pi nutrition level whereas S. luteus , a 'late-stage' mycobiont, produced more active biomass at a low Pi nutrition level.
3. The phytase activity of the external mycelia could not be detected; at the root surface a phytase activity was observed. Mycorrhizas had significantly higher activities than uninfected roots.
4. The addition of a relatively high concentration of a soluble phytate to the growth substratum resulted in an increased relative growth rate (RGR) in both mycorrhizal and non-mycorrhizal plants. The influence of the mycorrhizal fungi on the use of the phytate-P was small, despite the phytase activity of the mycorrhizal feeder roots.
5. The addition of phytate fixed on a HPLC resin did not result in an increase of the RGR and P uptake neither in the non-mycorrhizal nor in the mycorrhizal Pines. The experiment did not support the hypothesis that phytate, which has a low solubility in soils, is a useful P source for ectomycorrhizal plants.  相似文献   

14.
15.
To select agronomically useful transgenic plants, a large number of transgenic events are initially produced, gene transfer confirmed, and advanced to obtain homozygous lines for testing in field trials. Direct in planta assays for identifying the transgene carriers in the segregating progeny are based on the activity of selectable marker gene and are easy, simple and inexpensive. For this purpose, expression of bar gene as measured by tolerance to damage by glufosinate ammonium, the active ingredient in the herbicide BASTA, was investigated. Dose damage curves were generated by leaf paint tests with BASTA on four genotypes of sorghum. Transgenic plants were characterized in terms of sensitivity to the concentration of glufosinate ammonium. In transgenics, symptoms of BASTA swab tests at different growth stages and PCR analysis for cry1B were carried out and correlated. Germination tests could not be employed for large scale evaluation of transgenic progeny because of mortality of tolerant seedlings after transplantation to soil. Based on the above findings, a simple, inexpensive, time-saving, two-step scheme for effective evaluation of transgenics and their progeny containing bar gene as selection marker using BASTA swab tests is described.  相似文献   

16.
17.
When fresh rice leaves producing yeast Schwanniomyces occidentalis phytase were grounded and mixed with the whole extract of seed-based feed for pigs, the release of orthophosphate increased significantly. More specifically, phytate, a major source of phosphorus in the seeds, was hydrolyzed by heterologous phytase. Moreover, when transgenic rice plants were ensiled for up to 12 weeks, no decrease in the phytase activity of the heterologous enzyme was observed. This result strongly suggests that transgenic rice plants producing yeast phytase can be stored as silage without any loss of enzyme activity until usage as a feed additive.  相似文献   

18.
To maintain the sustainability of agriculture, it is imperative that the reliance of crops on inorganic phosphorus (P) fertilizers is reduced. One approach is to improve the ability of crop plants to acquire P from organic sources. Transgenic plants that produce microbial phytases have been suggested as a possible means to achieve this goal. However, neither the impact of heterologous expression of phytase on the ecology of microorganisms in the rhizosphere nor the impact of rhizosphere microorganisms on the efficacy of phytases in the rhizosphere of transgenic plants has been tested. In this paper, we demonstrate that the presence of rhizosphere microorganisms reduced the dependence of plants on extracellular secretion of phytase from roots when grown in a P-deficient soil. Despite this, the expression of phytase in transgenic plants had little or no impact on the microbial community structure as compared with control plant lines, whereas soil treatments, such as the addition of inorganic P, had large effects. The results demonstrate that soil microorganisms are explicitly involved in the availability of P to plants and that the microbial community in the rhizosphere appears to be resistant to the impacts of single-gene changes in plants designed to alter rhizosphere biochemistry and nutrient cycling.  相似文献   

19.
The sweet potato sporamin promoter was used to control the expression in transgenic potato of the E. coli appA gene, which encodes a bifunctional enzyme exhibiting both acid phosphatase and phytase activities. The sporamin promoter was highly active in leaves, stems and different size tubers of transgenic potato, with levels of phytase expression ranging from 3.8 to 7.4% of total soluble proteins. Phytase expression levels in transgenic potato tubers were stable over several cycles of propagation. Field tests showed that tuber size, number and yield increased in transgenic potato. Improved phosphorus (P) acquisition when phytate was provided as a sole P source and enhanced microtuber formation in cultured transgenic potato seedlings when phytate was provided as an additional P source were observed, which may account for the increase in leaf chloroplast accumulation (important for photosynthesis) and tuber yield of field-grown transgenic potato supplemented with organic fertilizers. Animal feeding tests indicated that the potato-produced phytase supplement was as effective as a commercially available microbial phytase in increasing the availability of phytate-P to weanling pigs. This study demonstrates that the sporamin promoter can effectively direct high-level recombinant protein expression in potato tubers. Moreover, overexpression of phytase in transgenic potato not only offers an ideal feed additive for improving phytate-P digestibility in monogastric animals but also improves tuber yield, enhances P acquisition from organic fertilizers, and has a potential for phytoremediation.  相似文献   

20.
When fresh rice leaves producing yeast Schwanniomyces occidentalis phytase were grounded and mixed with the whole extract of seed-based feed for pigs, the release of orthophosphate increased significantly. More specifically, phytate, a major source of phosphorus in the seeds, was hydrolyzed by heterologous phytase. Moreover, when transgenic rice plants were ensiled for up to 12 weeks, no decrease in the phytase activity of the heterologous enzyme was observed. This result strongly suggests that transgenic rice plants producing yeast phytase can be stored as silage without any loss of enzyme activity until usage as a feed additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号