首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methylmercury (MeHg) is one of the ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. However, the mechanisms of MeHg-induced neuronal cell death are incompletely understood. Treatment of neuronal cells with MeHg (0-2?μM) for 0.5-12?h, or pretreated with LA (12.5-100?μM) for 0.5-6?h resulted in toxic effects of primary cultured neurons concentration- and time-dependently. For further experiments, 12.5, 25, and 50?μM of LA pretreatment for 3?h followed by 1?μM MeHg for 6?h were performed for the examination of the responses of neurons. Exposure of MeHg resulted in damages of neurons, which were shown by a loss of cell viability, and supported by high levels of lactate dehydrogenase (LDH) release, apoptosis, and morphological changes. In addition, neurons were sensitive to MeHg-mediated oxidative stress, a finding that is consistent with ROS over-production, leading to decrease Ca2+-ATPase activity and increase intracellular free calcium. Moreover, expressions of NMDA receptor subunits in neurons were down-regulated after MeHg exposure, and expression of NR2A mRNA and protein were much more sensitive to MeHg than those of NR1 and NR2B. On the contrary, pretreatment with LA presented a concentration-dependent prevention against MeHg-mediated cytotoxic effects of neurons. In conclusion, present results showed that oxidative stress and intracellular Ca2+?dyshomeostasis resulting from MeHg exposure contributed to neuronal injury. LA could attenuate MeHg-induced neuronal toxicity via its antioxidant properties in primary cultured neurons.  相似文献   

2.
NMDA receptors (NMDARs) are glutamate-gated ion channels involved in excitatory synaptic transmission and in others physiological processes such as synaptic plasticity and development. The overload of Ca2+ ions through NMDARs, caused by an excessive activation of receptors, leads to excitotoxic neuronal cell death. For this reason, the reduction of Ca2+ flux through NMDARs has been a central focus in finding therapeutic strategies to prevent neuronal cell damage.Extracellular H+ are allosteric modulators of NMDARs. Starting from previous studies showing that extracellular mild acidosis reduces NMDA-evoked whole cell currents, we analyzed the effects of this condition on the NMDARs Ca2+ permeability, measured as “fractional calcium current” (Pf, i.e. the percentage of the total current carried by Ca2+ ions), of human NMDARs NR1/NR2A and NR1/NR2B transiently transfected in HeLa cells. Extracellular mild acidosis significantly reduces Pf of both human NR1/NR2A and NR1/NR2B NMDARs, also decreasing single channel conductance in outside out patches for NR1/NR2A receptor. Reduction of Ca2+ flux through NMDARs was also confirmed in cortical neurons in culture. A comparative analysis of both NMDA evoked Ca2+ transients and whole cell currents showed that extracellular H+ differentially modulate the permeation of Na+ and Ca2+ through NMDARs.Our data highlight the synergy of two distinct neuroprotective mechanisms during acidosis: Ca2+ entry through NMDARs is lowered due to the modulation of both open probability and Ca2+ permeability. Furthermore, this study provides the proof of concept that it is possible to reduce Ca2+ overload in neurons modulating the NMDAR Ca2+ permeability.  相似文献   

3.
Methylmercury (MeHg) is a well-known environmental pollutant leading to neurotoxicant associated with aberrant central nervous system (CNS) functions, but its toxic mechanisms have not yet been fully recognized. In the present study, we tested the hypothesis that MeHg induces neuronal injury via glutamate (Glu) dyshomeostasis and oxidative damage mechanisms and that these effects are attenuated by dextromethorphan (DM), a low-affinity and noncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist. Seventy-two rats were randomly divided into four groups of 18 animals in each group: control group, MeHg-treated group (4 and 12 μmol/kg), and DM-pretreated group. After the 4-week treatment, we observed that the administration of MeHg at a dose of 12 μmol/kg significantly increased in total mercury (Hg) levels, disrupted Glu metabolism, overexcited NMDARs, and led to intracellular calcium overload in the cerebral cortex. We also found that MeHg reduced nonenzymatic and enzymatic antioxidants, enhanced neurocyte apoptosis, induced reactive oxygen species (ROS), and caused lipid, protein, and DNA peroxidative damage in the cerebral cortex. Moreover, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) appeared to be inhibited by MeHg exposure. These alterations were significantly prevented by the pretreatment with DM at a dose of 13.5 μmol/kg. In conclusion, these findings strongly implicate that DM has potential to protect the brain from Glu dyshomeostasis and oxidative damage resulting from MeHg-induced neurotoxicity in rat.  相似文献   

4.
We have investigated the role of N-methyl-d-aspartate receptors (NMDARs) and γ-aminobutyric acid receptors type A (GABAARs) at an early stage of P19 neuronal differentiation. The subunit expression was profiled in 24-hour intervals with RT-PCR and functionality of the receptors was verified via fluo-3 imaging of Ca2+ dynamics in the immature P19 neurons showing that both NMDA and GABA excite neuronal bodies, but only polyamine-site sensitive NMDAR stimulation leads to enhanced Ca2+ signaling in the growth cones. Inhibition of NR1/NR2B NMDARs by 1 μM ifenprodil severely impaired P19 neurite extension and fasciculation, and this negative effect was fully reversible by polyamine addition. In contrast, GABAAR antagonism by a high dose of 200 μM bicuculline had no observable effect on P19 neuronal differentiation and fasciculation. Except for the differential NMDAR and GABAAR profiles of Ca2+ signaling within the immature P19 neurons, we have also shown that inhibition of NR1/NR2B NMDARs strongly decreased mRNA level of NCAM-180, which has been previously implicated as a regulator of neuronal growth cone protrusion and neurite extension. Our data thus suggest a critical role of NR1/NR2B NMDARs during the process of neuritogenesis and fasciculation of P19 neurons via differential control of local growth cone Ca2+ surges and NCAM-180 signaling.  相似文献   

5.
In the presence of glutamate and co-agonists, e.g., glycine, the N-methyl-D-aspartate receptor (NMDAR) plays an important role in physiological and pathophysiological brain processes. Previous studies indicate glycine could inhibit NMDAR responses induced by high concentration of NMDA in hippocampal neurons. The mechanism underlying this inhibitory impact, however, has been unclear. In this study, the whole-cell patch-clamp recording and Ca2+ imaging with Fluo-3/AM under laser scanning confocal microscope were used to analyze the possible involvement of NMDAR subunits in this effect. We found that the peak current of NMDARs and Ca2+ influx induced by high concentration of NMDA were reduced by treatment of glycine (0.03?C10 ??mol L?1) in a dose-dependent manner, and that the glycine-dependent inhibition of NMDAR responses, which were induced at 300 ??mol L?1 NMDA, was reversed by ZnCl2 through the blocking of the NR2A subunit of NMDARs, but was less influenced by ifenprodil, a NR2B inhibitor. Our results suggest that the glycine-dependent inactivation of NMDARs is potentially modulated by the regulatory subunit NR2A.  相似文献   

6.
Collapsin response mediator protein 2 (CRMP-2), traditionally viewed as an axon/dendrite specification and axonal growth protein, has emerged as nidus in regulation of both pre- and post-synaptic Ca2+ channels. Building on our discovery of the interaction and regulation of Ca2+ channels by CRMP-2, we recently identified a short sequence in CRMP-2 which, when appended to the transduction domain of HIV TAT protein, suppressed acute, inflammatory and neuropathic pain in vivo by functionally uncoupling CRMP-2 from the Ca2+ channel. Remarkably, we also found that this region attenuated Ca2+ influx via N-methylD-Aspartate receptors (NMDARs) and reduced neuronal death in a moderate controlled cortical impact model of traumatic brain injury (TBI). Here, we sought to extend these findings by examining additional neuroprotective effects of this peptide (TAT-CBD3) and exploring the biochemical mechanisms by which TAT-CBD3 targets NMDARs. We observed that an intraperitoneal injection of TAT-CBD3 peptide significantly reduced infarct volume in an animal model of focal cerebral ischemia. Neuroprotection was observed when TAT-CBD3 peptide was given either prior to or after occlusion but just prior to reperfusion. Surprisingly, a direct biochemical complex was not resolvable between the NMDAR subunit NR2B and CRMP-2. Intracellular application of TAT-CBD3 failed to inhibit NMDAR current. NR2B interactions with the post synaptic density protein 95 (PSD-95) remained intact and were not disrupted by TAT-CBD3. Peptide tiling of intracellular regions of NR2B revealed two 15-mer sequences, in the carboxyl-terminus of NR2B, that may confer binding between NR2B and CRMP-2 which supports CRMP-2''s role in excitotoxicity and neuroprotection.  相似文献   

7.
The N-methyl-D-aspartate (NMDA) receptor is a cation channel highly permeable to calcium and plays critical roles in governing normal and pathologic functions in neurons. Calcium entry through NMDA receptors (NMDARs) can lead to the activation of the Ca2+-dependent protease, calpain. Here we investigated the involvement of calpain in regulation of NMDAR channel function. After prolonged (5-min) treatment with NMDA or glutamate, the whole-cell NMDAR-mediated current was significantly reduced in both acutely dissociated and cultured cortical pyramidal neurons. The down-regulation of NMDAR current was blocked by bath application of selective calpain inhibitors. Intracellular injection of a specific calpain inhibitory peptide also eliminated the down-regulation of NMDAR current induced by prolonged NMDA treatment. In contrast, dynamin inhibitory peptide had no effect on the depression of NMDAR current, suggesting the lack of involvement of dynamin/clathrin-mediated NMDAR internalization in this process. Immunoblotting analysis showed that the NR2A and NR2B subunits of NMDARs were markedly degraded in cultured cortical neurons treated with glutamate, and the degradation of NR2 subunits was prevented by calpain inhibitors. Taken together, our results suggest that prolonged activation of NMDARs in neurons activates calpain, and activated calpain in turn down-regulates the function of NMDARs, which provides a neuroprotective mechanism against NMDAR overstimulation accompanying ischemia and stroke.  相似文献   

8.
Collapsin response mediator protein 2 (CRMP-2), traditionally viewed as an axon/dendrite specification and axonal growth protein, has emerged as nidus in regulation of both pre- and post-synaptic Ca2+ channels. Building on our discovery of the interaction and regulation of Ca2+ channels by CRMP-2, we recently identified a short sequence in CRMP-2 which, when appended to the transduction domain of HIV TAT protein, suppressed acute, inflammatory and neuropathic pain in vivo by functionally uncoupling CRMP-2 from the Ca2+ channel. Remarkably, we also found that this region attenuated Ca2+ influx via N-methylD-Aspartate receptors (NMDARs) and reduced neuronal death in a moderate controlled cortical impact model of traumatic brain injury (TBI). Here, we sought to extend these findings by examining additional neuroprotective effects of this peptide (TAT-CBD3) and exploring the biochemical mechanisms by which TAT-CBD3 targets NMDARs. We observed that an intraperitoneal injection of TAT-CBD3 peptide significantly reduced infarct volume in an animal model of focal cerebral ischemia. Neuroprotection was observed when TAT-CBD3 peptide was given either prior to or after occlusion but just prior to reperfusion. Surprisingly, a direct biochemical complex was not resolvable between the NMDAR subunit NR2B and CRMP-2. Intracellular application of TAT-CBD3 failed to inhibit NMDAR current. NR2B interactions with the post synaptic density protein 95 (PSD-95) remained intact and were not disrupted by TAT-CBD3. Peptide tiling of intracellular regions of NR2B revealed two 15-mer sequences, in the carboxyl-terminus of NR2B, that may confer binding between NR2B and CRMP-2 which supports CRMP-2's role in excitotoxicity and neuroprotection.  相似文献   

9.
N-Methyl-d-aspartate receptors (NMDARs) are ligand-gated ion channels that play an important role in neuronal development, plasticity, and excitotoxicity. NMDAR antagonists are neuroprotective in animal models of neuronal diseases, and the NMDAR open-channel blocker memantine is used to treat Alzheimer''s disease. In view of the clinical application of these pharmaceuticals and the reported expression of NMDARs in immune cells, we analyzed the drug''s effects on T-cell function. NMDAR antagonists inhibited antigen-specific T-cell proliferation and cytotoxicity of T cells and the migration of the cells toward chemokines. These activities correlated with a reduction in T-cell receptor (TCR)-induced Ca2+ mobilization and nuclear localization of NFATc1, and they attenuated the activation of Erk1/2 and Akt. In the presence of antagonists, Th1 effector cells produced less interleukin-2 (IL-2) and gamma interferon (IFN-γ), whereas Th2 cells produced more IL-10 and IL-13. However, in NMDAR knockout mice, the presumptive expression of functional NMDARs in wild-type T cells was inconclusive. Instead, inhibition of NMDAR antagonists on the conductivity of Kv1.3 and KCa3.1 potassium channels was found. Hence, NMDAR antagonists are potent immunosuppressants with therapeutic potential in the treatment of immune diseases, but their effects on T cells have to be considered in that Kv1.3 and KCa3.1 channels are their major effectors.  相似文献   

10.
Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.  相似文献   

11.
The N‐methyl d ‐aspartate type glutamate receptor (NMDAR) is a ligand‐gated cation channel that causes Ca2+ influx in nerve cells. An NMDAR agonist is effective to the sperm motility in fowls, although the actual role of NMDAR in sperm function is unknown. In the present study, RNA‐seq of the spermatogenic testes suggested the presence of NMDAR in the sperm of the newt Cynops pyrrhogaster. Glutamate of at least 0.7 ± 0.5 mM was detected in the egg‐jelly substances along with acrosome reaction‐inducing substance (ARIS) and sperm motility‐initiating substance (SMIS). In the egg‐jelly extract (JE) that included the ARIS and SMIS, the acrosome reaction was inhibited by a NMDAR antagonists, memantine and MK801. MK801 also inhibited the spontaneous acrosome reaction in Steinberg's salt solution (ST). Furthermore, memantine and MK801 suppressed the progressive motility of the sperm in JE and spontaneous waving of the undulating membrane, which is the tail structure giving thrust for forward motility, in ST. The spontaneous waving of the undulating membrane was promoted when Mg2+, which blocks Ca2+ influx through gated NMDARs, was removed from the ST. In addition, the ARIS‐induced acrosome reaction was inhibited by a selective antagonist of the transient receptor potential vanilloid 4, whose activation might result in the membrane depolarization to release Mg2+ from the NMDAR. These results suggest that NMDAR acts together with other cation channels in the induction of the acrosome reaction and motility of the sperm during the fertilization process of C. pyrrhogaster.  相似文献   

12.
Mercury, especially methylmercury (MeHg), is implicated in the etiology of cardiovascular diseases. Earlier, we have reported that MeHg induces phospholipase D (PLD) activation through oxidative stress and thiol-redox alteration. Hence, we investigated the mechanism of the MeHg-induced PLD activation through the upstream regulation by phospholipase A2 (PLA2) and lipid oxygenases such as cyclooxygenase (COX) and lipoxygenase (LOX) in the bovine pulmonary artery endothelial cells (BPAECs). Our results showed that MeHg significantly activated both PLA2 (release of [3H]arachidonic acid, AA) and PLD (formation of [32P]phosphatidylbutanol) in BPAECs in dose- (0–10 μM) and time-dependent (0–60 min) fashion. The cPLA2-specific inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), significantly attenuated the MeHg-induced [3H]AA release in ECs. MeHg-induced PLD activation was also inhibited by AACOCF3 and the COX- and LOX-specific inhibitors. MeHg also induced the formation of COX- and LOX-catalyzed eicosanoids in ECs. MeHg-induced cytotoxicity (based on lactate dehydrogenase release) was protected by PLA2-, COX-, and LOX-specific inhibitors and 1-butanol, the PLD-generated PA quencher. For the first time, our studies showed that MeHg activated PLD in vascular ECs through the upstream action of cPLA2 and the COX- and LOX-generated eicosanoids. These results offered insights into the mechanism(s) of the MeHg-mediated vascular endothelial cell lipid signaling as an underlying cause of mercury-induced cardiovascular diseases.  相似文献   

13.
The phytotoxic aluminum species (Al3+) is considered as the primary factor limiting crop productivity in over 40 % of world’s arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca2+ and Mg2+ content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 ? q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca2+ and Mg2+ in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al3+ toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca2+ and Mg2+ in the leaves. We propose that the different sensitivities of wheat cultivars to Al3+ toxicity can be correlated to differences in the redox state of QA. Thus, chlorophyll fluorescence measurements can be a promising tool for rapid screening of Al resistance in wheat cultivars.  相似文献   

14.
Activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in various forms of synaptic plasticity depending on the receptor subtypes involved. However, the contribution of NR2A and NR2B subunits in the induction of long-term depression (LTD) of excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of the young rat visual cortex remains unclear. The present study used whole-cell patch-clamp recordings in vitro to investigate the role of NR2A- and NR2B-containing NMDARs in the induction of LTD in visual cortical slices from 12- to 15-day old rats. We found that LTD was readily induced in layer II/III pyramidal neurons of the rat visual cortex with 10-min 1-Hz stimulation paired with postsynaptic depolarization. D-APV, a selective NMDAR antagonist, blocked the induction of LTD. Moreover, the selective NR2B-containing NMDAR antagonists (Ro 25-6981 and ifenprodil) also prevented the induction of LTD. However, Zn2+, a voltage-independent NR2A-containing NMDAR antagonist, displayed no influence on the induction of LTD. These results suggest that the induction of LTD in layer II/III pyramidal neurons of the young rat visual cortex is NMDAR-dependent and requires NR2B-containing NMDARs, not NR2A-containing NMDARs.  相似文献   

15.
Ca2+ influxes are regulated by the functional state of N-methyl-D-aspartate receptors (NMDARs). Dephosphorylation of NMDARs subunits decreases Ca2+ influxes. NR3, a novel subunit of NMDARs, also decreases Ca2+ influxes by forming new NMDARs with NR1 and NR2. It is meaningful to uncover whether protein phosphatase 2A (PP2A) and NR3A play a role in the protective effect of Simvastatin on ischemic stroke. In the present study, the Sprague-Dawley rats were pretreated with Simvastatin for 7 days before middle cerebral artery occlusion was performed to mimic ischemic stroke. The results showed that Simvastatin decreased brain ischemic infarct area significantly while increasing the expression levels of PP2A and NR3A, thus dephosphorylating the serine sites of NR1 (ser896 and ser897) along with increased enzymatic activities of PP2A. The protein levels of NR3A decreased as the enzymatic activities of PP2A were inhibited by okadaic acid. The results indicated that Simvastatin could protect the cerebrum from ischemic injury through a signaling mechanism involving elevated levels of PP2A and NR3A, and that PP2A might involve in the regulatory mechanism of NR3A expression.  相似文献   

16.
Amyloid beta (Aβ)-mediated synapse dysfunction is an early event in Alzheimer’s disease (AD) pathogenesis and previous studies suggest that NMDA receptor (NMDAR) dysregulation may contribute to these pathological effects. Although Aβ peptides impair NMDAR expression and activity, the mechanisms mediating these alterations in the early stages of AD are unclear. Here, we observed that NMDAR subunit NR2B and PSD-95 levels were aberrantly upregulated and correlated with Aβ42 load in human postsynaptic fractions of the prefrontal cortex in early stages of AD patients, as well as in the hippocampus of 3xTg-AD mice. Importantly, NR2B and PSD95 dysregulation was revealed by an increased expression of both proteins in Aβ-injected mouse hippocampi. In cultured neurons, Aβ oligomers increased the NR2B-containing NMDAR density in neuronal membranes and the NMDA-induced intracellular Ca2+ increase, in addition to colocalization in dendrites of NR2B subunit and PSD95. Mechanistically, Aβ oligomers required integrin β1 to promote synaptic location and function of NR2B-containing NMDARs and PSD95 by phosphorylation through classic PKCs. These results provide evidence that Aβ oligomers modify the contribution of NR2B to NMDAR composition and function in the early stages of AD through an integrin β1 and PKC-dependent pathway. These data reveal a novel role of Aβ oligomers in synaptic dysfunction that may be relevant to early-stage AD pathogenesis.Subject terms: Alzheimer''s disease, Extracellular signalling molecules  相似文献   

17.
Cardiac hypertrophy plays a major role in heart failure and is related to patient morbidity and mortality. Calcium overloading is a main risk for cardiac hypertrophy, and Na+/K+-ATPase (NKA) has been found that it could not only regulate intracellular Na+ levels but also control the intracellular Ca2+ ([Ca2+]i) level through Na+/Ca2+-exchanger (NCX). Recent studies have reported that klotho could affect [Ca2+]i level. In this study, we aimed at exploring the role of klotho in improving isoproterenol-induced hypertrophic response of H9C2 cells. The H9C2 cells were randomly divided into control and isoproterenol (ISO) (10 μM) groups. Klotho protein (10 μg/ml) or NKAα2 siRNA was used to determine the changes in isoproterenol-induced hypertrophic response. The alterations of [Ca2+]i level were measured by spectrofluorometry. Our results showed that H9C2 cells which were treated with isoproterenol presented a higher level of [Ca2+]i and hypertrophic gene expression at 24 and 48 h compared with the control group. Moreover, the expressions of NKAα1 and NKAα2 were both increased in control and ISO groups after treating with klotho protein; meanwhile, the NKA activity was increased and NCX activity was decreased after treatment. Consistently, the [Ca2+]i level and hypertrophic gene expression were decreased in ISO group after klotho protein treatment. However, these effects were both prevented by transfecting with NKAα2 siRNA. In conclusion, these findings demonstrated that klotho inhibits isoproterenol-induced hypertrophic response in H9C2 cells by activating NKA and inhibiting the reverse mode of NCX and this effect may be associated with the upregulation of NKAα2 expression.  相似文献   

18.
Abstract: In primary prelabeled cultures of cerebellar granule cells, methyl mercury (MeHg) induced a concentration- and time-dependent release of [3H]arachidonic acid. MeHg-induced [3H]arachidonate release was partially dependent on the extracellular Ca2+ concentration. MeHg at 10–20 µM also stimulated basal 45Ca2+ uptake after 20 min of incubation at 37°C, and at 10 µM inhibited K+ depolarization-stimulated uptake. MeHg stimulated [3H]arachidonate uptake, but had no effect on the rate of phospholipid reacylation. Phospholipase A2 (PLA2) activation preceded cytotoxicity, but at higher concentrations of MeHg such dissociation was not evident. Inhibition of MeHg-induced PLA2 activation by 100 µM mepacrine failed to modify cytotoxicity. MeHg-induced lipoperoxidation, measured as the production of thiobarbituric acid-reacting products, was inhibited by α-tocopherol without inhibition of [3H]arachidonate release. The absence of α-tocopherol inhibition of MeHg-induced arachidonate release precludes a causal role for lipoperoxide-induced PLA2 activation in this system. Moreover, MeHg induced an increased susceptibility of unilamellar vesicles to exogenous PLA2 in the presence of low Ca2+ concentrations without evidence of lipid peroxidation. [3H]Arachidonate incorporation into granule neuron phospholipids was analyzed by isocratic HPLC analysis. Relatively high proportional incorporation was found in the combined phosphatidylcholine fractions and phosphatidylinositol. With MeHg, an increase in the relative specific activity of incorporation was found in the phosphatidylinositol fraction, indicating a preferential turnover in this phospholipid species in the presence of MeHg.  相似文献   

19.
The N-methyl-d-Aspartate type of glutamate receptor (NMDAR) plays a major role in the vertebrate retina. Expression of NR1 splice-variants and NR2 subunits in the retina differs from that in the brain, suggesting a tissue-specific heteromeric assembly of NMDARs. We previously demonstrated that serum alters retinal glutamate receptor properties. In order to relate this effect to NMDAR subunit composition, we here studied the effect of serum on the expression of NMDAR subunits and splice-variants in chick retinal neurons in primary culture. Our results show that mRNA and protein expression of NR1 alternative splice-variants and NR2 subunits are differentially modified by glutamate contained in serum. Such alteration suggests that NMDAR structure is reversed to embryonic heteromeric composition, through the control of subunit availability. The present findings could be relevant for the understanding of the lack of effect in the retina, of drugs which have been shown to protect cortical neurons from glutamate-induced excitotoxicity in those pathological or clinical conditions in which the retina is exposed to serum. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

20.
Characterisation of the expression of NMDA receptors in human astrocytes   总被引:1,自引:0,他引:1  
Lee MC  Ting KK  Adams S  Brew BJ  Chung R  Guillemin GJ 《PloS one》2010,5(11):e14123
Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号