首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.  相似文献   

2.
BACKGROUND: Myelin is critical for efficient axonal conduction in the vertebrate nervous system. Neuregulin (Nrg) ligands and their ErbB receptors are required for the development of Schwann cells, the glial cells that form myelin in the peripheral nervous system. Previous studies have not determined whether Nrg-ErbB signaling is essential in vivo for Schwann cell fate specification, proliferation, survival, migration, or the onset of myelination. RESULTS: In genetic screens for mutants with disruptions in myelinated nerves, we identified mutations in erbb3 and erbb2, which together encode a heteromeric tyrosine kinase receptor for Neuregulin ligands. Phenotypic analysis shows that both genes are essential for development of Schwann cells. BrdU-incorporation studies and time-lapse analysis reveal that Schwann cell proliferation and migration, but not survival, are disrupted in erbb3 mutants. We show that Schwann cells can migrate in the absence of DNA replication. This uncoupling of proliferation and migration indicates that erbb gene function is required independently for these two processes. Pharmacological inhibition of ErbB signaling at different stages reveals a continuing requirement for ErbB function during migration and also provides evidence that ErbB signaling is required after migration for proliferation and the terminal differentiation of myelinating Schwann cells. CONCLUSIONS: These results provide in vivo evidence that Neuregulin-ErbB signaling is essential for directed Schwann cell migration and demonstrate that this pathway is also required for the onset of myelination in postmigratory Schwann cells.  相似文献   

3.
Neuregulin-1 (Nrg1) provides a key axonal signal that regulates Schwann cell proliferation, migration and myelination through binding to ErbB2/3 receptors. The analysis of a number of genetic models has unmasked fundamental mechanisms underlying the specificity of the Nrg1/ErbB signaling axis. Differential expression of Nrg1 isoforms, Nrg1 processing, and ErbB receptor localization and trafficking represent important regulatory themes in the control of Nrg1/ErbB function. Nrg1 binding to ErbB2/3 receptors results in the activation of intracellular signal transduction pathways that initiate changes in Schwann cell behavior. Here, we review data that has defined the role of key Nrg1/ErbB signaling components like Shp2, ERK1/2, FAK, Rac1/Cdc42 and calcineurin in development of the Schwann cell lineage in vivo. Many of these regulators receive converging signals from other cues that are provided by Notch, integrin or G-protein coupled receptors. Signaling by multiple extracellular factors may act as key modifiers and allow Schwann cells at different developmental stages to respond in distinct manners to the Nrg1/ErbB signal.  相似文献   

4.
Neuregulins comprise a family of epidermal growth factor-like ligands that interact with ErbB receptor tyrosine kinases to control many aspects of neural development. One of the most dramatic effects of neuregulin-1 is on glial cell differentiation. The membrane-bound neuregulin-1 type III isoform is an axonal ligand for glial ErbB receptors that regulates the early Schwann cell lineage, including the generation of precursors. Recent studies have shown that the amount of neuregulin-1 type III expressed on axons also dictates the glial phenotype, with a threshold level triggering Schwann cell myelination. Remarkably, neuregulin-1 type III also regulates Schwann cell membrane growth to adjust myelin sheath thickness to match axon caliber precisely. Whether this signaling system operates in central nervous system myelination remains an open question of major importance for human demyelinating diseases.  相似文献   

5.
Neuregulin-1 provides an important axonally derived signal for the survival and growth of developing Schwann cells, which is transmitted by the ErbB2/ErbB3 receptor tyrosine kinases. Null mutations of the neuregulin-1, erbB2, or erbB3 mouse genes cause severe deficits in early Schwann cell development. Here, we employ Cre-loxP technology to introduce erbB2 mutations late in Schwann cell development, using a Krox20-cre allele. Cre-mediated erbB2 ablation occurs perinatally in peripheral nerves, but already at E11 within spinal roots. The mutant mice exhibit a widespread peripheral neuropathy characterized by abnormally thin myelin sheaths, containing fewer myelin wraps. In addition, in spinal roots the Schwann cell precursor pool is not correctly established. Thus, the Neuregulin signaling system functions during multiple stages of Schwann cell development and is essential for correct myelination. The thickness of the myelin sheath is determined by the axon diameter, and we suggest that trophic signals provided by the nerve determine the number of times a Schwann cell wraps an axon.  相似文献   

6.
Demyelination is a common pathologic feature in many neurodegenerative diseases including infection with leprosy-causing Mycobacterium leprae. Because of the long incubation time and highly complex disease pathogenesis, the management of nerve damage in leprosy, as in other demyelinating diseases, is extremely difficult. Therefore, an important challenge in therapeutic interventions is to identify the molecular events that occur in the early phase before the progression of the disease. Here we provide evidence that M. leprae-induced demyelination is a result of direct bacterial ligation to and activation of ErbB2 receptor tyrosine kinase (RTK) signaling without ErbB2-ErbB3 heterodimerization, a previously unknown mechanism that bypasses the neuregulin-ErbB3-mediated ErbB2 phosphorylation. MEK-dependent Erk1 and Erk2 (hereafter referred to as Erk1/2) signaling is identified as a downstream target of M. leprae-induced ErbB2 activation that mediates demyelination. Herceptin (trastuzumab), a therapeutic humanized ErbB2-specific antibody, inhibits M. leprae binding to and activation of ErbB2 and Erk1/2 in human primary Schwann cells, and the blockade of ErbB2 activity by the small molecule dual ErbB1-ErbB2 kinase inhibitor PKI-166 (ref. 11) effectively abrogates M. leprae-induced myelin damage in in vitro and in vivo models. These results may have implications for the design of ErbB2 RTK-based therapies for both leprosy nerve damage and other demyelinating neurodegenerative diseases.  相似文献   

7.
Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival.  相似文献   

8.
Hereditary Motor and Sensory Neuropathy Lom (HMSNL) is a severe autosomal recessive peripheral neuropathy, the most common form of demyelinating Charcot-Marie-Tooth (CMT) disease in the Roma (Gypsy) population. The mutated gene, N-myc downstream-regulated gene 1 (NDRG1), is widely expressed and has been implicated in a range of processes and pathways. To gain an insight into NDRG1 function we performed yeast two-hybrid screening and identified interacting proteins whose known functions suggest involvement in cellular trafficking. Further analyses, focusing on apolipoproteins A-I and A-II, confirmed their interaction with NDRG1 in mammalian cells and suggest a defect in Schwann cell lipid trafficking as a major pathogenetic mechanism in HMSNL. At the same time, the chromosomal location of NDRG1 coincides with a reported HDL-C QTL in humans and in mice. A putative role of NDRG1 in the general mechanisms of HDL-mediated cholesterol transport was supported by biochemical studies of blood lipids, which revealed an association between the Gypsy founder mutation, R148X, and decreased HDL-C levels.  相似文献   

9.
Understanding the control of myelin formation by oligodendrocytes is essential for treating demyelinating diseases. Neuregulin-1 (NRG1) type III, an EGF-like growth factor, is essential for myelination in the PNS. It is thus thought that NRG1/ErbB signaling also regulates CNS myelination, a view suggested by in vitro studies and the overexpression of dominant-negative ErbB receptors. To directly test this hypothesis, we generated a series of conditional null mutants that completely lack NRG1 beginning at different stages of neural development. Unexpectedly, these mice assemble normal amounts of myelin. In addition, double mutants lacking oligodendroglial ErbB3 and ErbB4 become myelinated in the absence of any stimulation by neuregulins. In contrast, a significant hypermyelination is achieved by transgenic overexpression of NRG1 type I or NRG1 type III. Thus, NRG1/ErbB signaling is markedly different between Schwann cells and oligodendrocytes that have evolved an NRG/ErbB-independent mechanism of myelination control.  相似文献   

10.
Signaling by laminins and axonal neuregulin has been implicated in regulating axon sorting by myelin-forming Schwann cells. However, the signal transduction mechanisms are unknown. Focal adhesion kinase (FAK) has been linked to alpha6beta1 integrin and ErbB receptor signaling, and we show that myelination by Schwann cells lacking FAK is severely impaired. Mutant Schwann cells could interdigitate between axon bundles, indicating that FAK signaling was not required for process extension. However, Schwann cell FAK was required to stimulate cell proliferation, suggesting that amyelination was caused by insufficient Schwann cells. ErbB2 receptor and AKT were robustly phosphorylated in mutant Schwann cells, indicating that neuregulin signaling from axons was unimpaired. These findings demonstrate the vital relationship between axon defasciculation and Schwann cell number and show the importance of FAK in regulating cell proliferation in the developing nervous system.  相似文献   

11.
GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve demyelination in patients with autosomal recessive Charcot-Marie-Tooth (CMT) neuropathy. These data, together with the ability of frabin to induce Cdc42-mediated cell-shape changes in transfected Schwann cells, suggest that Rho GTPase signaling is essential for proper myelination of the peripheral nervous system.  相似文献   

12.
The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.  相似文献   

13.
In peripheral nerves, P0 glycoprotein accounts for more than 20% of myelin protein content. P0 is synthesized by Schwann cells, processed in the endoplasmic reticulum (ER) and enters the secretory pathway. However, the mutant P0 with S63 deleted (P0S63del) accumulates in the ER lumen and induces a demyelinating neuropathy in Charcot–Marie–Tooth disease type 1B (CMT1B)–S63del mice. Accumulation of P0S63del in the ER triggers a persistent unfolded protein response. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER stress sensor that phosphorylates eukaryotic initiation factor 2 alpha (eIF2alpha) in order to attenuate protein synthesis. We have shown that increasing phosphophorylated-eIF2alpha (P-eIF2alpha) is a potent therapeutic strategy, improving myelination and motor function in S63del mice. Here, we explore the converse experiment: Perk haploinsufficiency reduces P-eIF2alpha in S63del nerves as expected, but surprisingly, ameliorates, rather than worsens S63del neuropathy. Motor performance and myelin abnormalities improved in S63del//Perk+/− compared with S63del mice. These data suggest that mechanisms other than protein translation might be involved in CMT1B/S63del neuropathy. In addition, Perk deficiency in other cells may contribute to demyelination in a non–Schwann-cell autonomous manner.  相似文献   

14.
Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate phenotypes. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neurons such as cerebellar Purkinje neurons, hippocampal pyramidal neurons, mitral neurons of the olfactory bulb and cortical pyramidal neurons. The lack of GDAP1 staining in the white matter and nerve roots suggested that glial cells do not express GDAP1. In DRG cultures satellite cells and Schwann cells were GDAP1-negative. Overexpression of GDAP1-induced fragmentation of mitochondria suggesting a role of GDAP1 in the fission pathway of the mitochondrial dynamics. Missense mutations showed two different patterns: most of them induced mitochondrial fragmentation but the T157P mutation showed an aggregation pattern. Whereas null mutations of GDAP1 should be associated with loss of function of the protein, missense mutations may act through different pathogenic mechanisms including a dominant-negative effect, suggesting that different molecular mechanisms may underlay the pathogenesis of CMT4A.  相似文献   

15.
16.
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.  相似文献   

17.
Charcot-Marie-Tooth disease (CMT) is the most common hereditary peripheral neuropathy, affecting 1 in 2,500 people. The only treatment currently available is rehabilitation or corrective surgery. The most frequent form of the disease, CMT-1A, involves abnormal myelination of the peripheral nerves. Here we used a mouse model of CMT-1A to test the ability of ascorbic acid, a known promoter of myelination, to correct the CMT-1A phenotype. Ascorbic acid treatment resulted in substantial amelioration of the CMT-1A phenotype, and reduced the expression of PMP22 to a level below what is necessary to induce the disease phenotype. As ascorbic acid has already been approved by the FDA for other clinical indications, it offers an immediate therapeutic possibility for patients with the disease.  相似文献   

18.
Charcot‐Marie‐Tooth (CMT) diseases are a heterogeneous group of genetic peripheral neuropathies caused by mutations in a variety of genes, which are involved in the development and maintenance of peripheral nerves. Myelin protein zero (MPZ) is expressed by Schwann cells, and MPZ mutations can lead to primarily demyelinating polyneuropathies including CMT type 1B. Different mutations demonstrate various forms of disease pathomechanisms, which may be beneficial in understanding the disease cellular pathology. Our molecular dynamics simulation study on the possible impacts of I30T mutation on the MPZ protein structure suggested a higher hydrophobicity and thus lower stability in the membranous structures. A study was also conducted to predict native/mutant MPZ interactions. To validate the results of the simulation study, the native and mutant forms of the MPZ protein were separately expressed in a cellular model, and the protein trafficking was chased down in a time course pattern. In vitro studies provided more evidence on the instability of the MPZ protein due to the mutation. In this study, qualitative and quantitative approaches were adopted to confirm the instability of mutant MPZ in cellular membranes.  相似文献   

19.
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy. The predominant subtype, CMT-1A, accounts for more than 50% of all cases and is associated with an interstitial chromosomal duplication of 17p12 (refs. 2,3). We have generated a model of CMT-1A by introducing extra copies of the responsible disease gene, Pmp22 (encoding the peripheral myelin protein of 22 kDa), into transgenic rats. Here, we used this model to test whether progesterone, a regulator of the myelin genes Pmp22 and myelin protein zero (Mpz) in cultured Schwann cells, can modulate the progressive neuropathy caused by moderate overexpression of Pmp22. Male transgenic rats (n = 84) were randomly assigned into three treatment groups: progesterone, progesterone antagonist (onapristone) and placebo control. Daily administration of progesterone elevated the steady-state levels of Pmp22 and Mpz mRNA in the sciatic nerve, resulting in enhanced Schwann cell pathology and a more progressive clinical neuropathy. In contrast, administration of the selective progesterone receptor antagonist reduced overexpression of Pmp22 and improved the CMT phenotype, without obvious side effects, in wild-type or transgenic rats. Taken together, these data provide proof of principle that the progesterone receptor of myelin-forming Schwann cells is a promising pharmacological target for therapy of CMT-1A.  相似文献   

20.
The development of the peripheral nervous system (PNS) is a highly dynamic process, during which motor and sensory axons innervate distal targets, such as skeletal muscles and skin. Axonal function depends critically on support from Schwann cells, the main glial cell type in the PNS. Schwann cells originate from the neural crest, migrate along outgrowing axons and associate with axons along their entire length prior to ensheathment or myelination. How axonal growth and the migration of Schwann cells is coordinated at the level of reciprocal axon-glial signaling is the fascinating subject of ongoing research. Neuregulin-1 (NRG1) type III, an axonal membrane-bound ligand for receptor tyrosine kinases of the ErbB family, acts as a “master regulator” of peripheral myelination. In addition, NRG1-ErbB signaling directs the development of the Schwann cell lineage and regulates the proliferation and survival of Schwann cells. Studies in zebrafish have identified a direct role of NRG1 type III in Schwann cell migration, but to what extend NRG1 serves a similar function in the mammalian PNS is not clear. We have employed a mouse superior cervical ganglion explant culture system, in which the migration of endogenous Schwann cells along outgrowing axons can be visualized by time-lapse imaging. Using this approach, we found that NRG1 type III-ErbB signaling regulates the colonization of distal axonal segments by Schwann cells. However, our data suggest an indirect effect of NRG1 type III-ErbB signaling via the support of Schwann cell survival in proximal axonal regions rather than a direct effect on Schwann cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号