首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined host plant effect on susceptibility of whitefly Bemisia tabaci to the entomopathogenic fungus Beauveria bassiana under controlled conditions. Insects were reared on cucumber, eggplant, tomato or cabbage. Fungal suspensions of 1×104, 105, 106, 107 and 108 conidia/mL were applied on second-instar nymphs. Nymphal survival significantly differed among different host plant species on which the nymphs were reared. Ten days after inoculation with 1×108 conidia/mL, percent survival was 4.2±0.7, 9.6±0.4, 13.4±0.8, and 24.3±0.9% on cucumber, eggplant, tomato and cabbage, respectively. Average survival times of nymphs were also significantly influenced by host plant species. After inoculation with 1×108 conidia/mL, survival times were 4.8±0.15, 6.0±0.11, 5.7±0.13, and 6.2±0.08 days for nymphs reared on cucumber, eggplant, tomato, and cabbage, respectively. Virulence also differed depending on host plant species; 10 days after inoculation, LC50 values were 4.6×104, 1.6×105, 4.2×105 and 2.1×106 conidia/mL on cucumber, eggplant, tomato and cabbage, respectively. Nymphs on cucumber showed highest susceptibility.  相似文献   

2.
Recently, the Q biotype of tobacco whitefly has been recognized as the most hazardous strain of Bemisia tabaci worldwide because of increased resistance to some insecticide groups requiring alternative strategies for its control. We studied the susceptibility of this biotype of B. tabaci to 21 isolates of Beauveria bassiana, three isolates of Isaria fumosorosea, one isolate of I. cateni, three isolates of Lecanicillium lecanii, one isolate of L. attenuatum, and one isolate of Aschersonia aleyrodis. These isolates were evaluated on pruned eggplant seedlings, at a concentration of 108 conidia/mL (deposited at 6000±586 conidia mm?2). The mortality based on mycosis varied from 18 to 97% after 6 days. Isaria fumosorosea isolate Pf04, B. bassiana isolates Bb06, Bb12, and L. lecanii L14 were found the most effective. Furthermore, five isolates were chosen for concentration–mortality response assays and compared to B. bassiana GHA as a standard. The numbers of nymphs infected by fungi were correlated with the spore concentration. L. lecanii L14 and I. fumosorosea Pf04 had the shortest LT50 at 3.5 and 3.3 days at 6000±586 conidia mm?2. Mortality declined and LT50 values were longer as the concentration of conidia was reduced. The LD50 values were calculated as 87, 147, 191, 263, and 269 conidia mm?2 for isolates L14, GHA, AS1260, Bb13, and Pf04, respectively. These results indicated that the Q biotype of sweetpotato whitefly was susceptible to the five isolates of entomopathogenic fungi and these isolates have potential to be developed as microbial pesticides for whitefly control.  相似文献   

3.
Fifteen isolates of the entomopathogenic fungus Verticillium lecanii, from various hosts and locations, were bioassayed in the laboratory at 19 ± 1°C and > 95% r.h. against fourth instar scales of Trialeurodes vaporariorum. Highly pathogenic isolates generally originated from whitefly; however, there was no correlation between conidiospore size or germination rate on agar, and pathogenicity. LT50 values ranged from 5.7 to > 9 days and LC50 (7 days) from 1.3 × 105 to 4.2 × 107 spores/ml. The effect of periods in low humidity (70% r.h.) following 16 or 96 h at > 95% r.h. after immersion of whitefly scales on tomato leaf discs in a suspension of 1 × 106 spores/ml, was compared for five isolates. Progressively longer periods at 70% r.h. following 16 h at > 95% r.h., reduced significantly (P < 0.001) the pathogenicity of all isolates. In these conditions isolate A was least affected by low-humidity transfer. The high pathogenicity of isolate A was associated with its more rapid development on the host cuticle during the first 16 h in high humidity. When inoculated whitefly scales were transferred to 70% r.h. after a preliminary 96 h incubation in high humidity, all five isolates achieved a higher level of pathogenicity compared with their transfer to low humidity after 16 h high humidity. Thus the screening of V. lecanii isolates in limiting humidity conditions provided a more critical assessment of their pathogenicity and of their potential success in whitefly control relevant to the glasshouse environment.  相似文献   

4.
The aim of this current study was to evaluate the mortality of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) nymphs by the combination between the entomopathogenic fungus Isaria javanica (Friedrichs & Bally) Samson & Hywel‐Jones and synthetic chemical insecticides. The bioefficacy of I. javanica and the insect growth regulators named spiromesifen and buprofezin was tested alone and in combination against B. tabaci nymphs under screenhouse conditions. The in vitro compatibility between these two control agents was previously assessed under laboratory conditions. The sublethal concentration (LC25) of these insecticides towards second‐instar nymphs was determined and then mixed with the fungal treatments to investigate the type of interaction. All I. javanica isolates at 5 × 107 conidia/ml inflicted nymphal mortality by up to 62.4%. The insecticides did not influence the germination and mycelial growth of the selected I. javanica isolate CG1282. In general, the insecticide–fungus combinations increased nymphal mortalities in comparison with their single counterparts. Combinations with the fungus and buprofezin or spiromesifen augmented nymphal mortality by 10% and 24%, respectively, in comparison with the fungus alone. Additive interaction was found with the combination of the I. javanica CG1282 at 1 × 106 conidia/ml and spiromesifen at 1.56 ppm, and additive and synergistic interactions were achieved with the fungus at 5 × 106 conidia/ml and spiromesifen at 3.12, 6.25 and 12.5 ppm. Additive interactions were also observed from mixtures of fungus at 5 × 106 and buprofezin at 3.12 and 6.25 ppm. Only combinations of I. javanica with spiromesifen reduced to some extent the mycosis on dead nymphs. The joint action of I. javanica with sublethal doses of these insecticides may be a promising tool to assist in the integrated management system for B. tabaci.  相似文献   

5.
We quantified the tritrophic effect of host plant on the susceptibility of the sweetpotato whitefly Bemisia tabaci (Genn.) to a fungal pathogen in the laboratory. Second-instar whiteflies reared on cucumber, eggplant, tomato and bean plants for six generations were exposed to conidial suspensions of Isaria fumosorosea isolate IF-1106. Our results did not detect differences in response (proportional survival or median lethal time, LT50 days) among insect populations derived from different plants that were treated with 107 conidia/ml. However, at concentrations ≤ 5×106 conidia/ml, whiteflies reared on bean and tomato died significantly more quickly (i.e. LT50 of 4–5 days) compared with cucumber and eggplant reared populations (5–7 days). Bean and tomato-reared populations were also more susceptible to mycosis (LC50 ≈ 6 × 105 conidia/ml) compared with those reared on cucumber (1.9 × 106 conidia/ml) and eggplant (1.5 × 106 conidia/ml). A separate study confirmed that this differential response of whitefly populations to I. fumosorosea was not explained by differences in deposition rate of conidia on leaf surfaces (i.e. a dosage effect). Our findings show that host plants affect the pathogenicity and virulence of a herbivore pathogen, but depend on the rate of exposure (inoculum) applied.  相似文献   

6.
As part of a 3-fold approach to select potential mycoinsecticides for whitefly control, we evaluated infectivity, thermal requirements, and toxicogenic activity of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Clavicipitaceae) under laboratory conditions. Twenty-five native B. bassiana isolates and a commercially available mycoinsecticide (based on B. bassiana) were evaluated for virulence to fourth instar nymphs of sweetpotato whitefly, Bemisia tabaci, and greenhouse whitefly, Trialeurodes vaporariorum, at a concentration of 1 × 107 conidia/ml. All isolates were pathogenic for both whitefly species, whereas mortality rates varied from 3 to 85%. A second series of bioassays was conducted on 10 selected isolates using four 10-fold concentrations ranging from 1 × 105 to 1 × 108 conidia/ml. Median lethal concentrations (LC50) of the four most virulent isolates varied from 1.1 × 105 to 6.2 × 106 conidia/ml and average survival time (AST) of treated nymphs from 5.9 to 7.4 days. T. vaporariorum were significantly more susceptible to all B. bassiana isolates than B. tabaci. The thermal biology of the eight most virulent isolates to both whitefly species was investigated at six temperatures (10–35 °C). The colony radial growth rate was estimated from the slope of the linear regression of colony radius on time and data were then fitted to a modified generalized β function that accounted for 90.5–99.3% of the data variance. Optimum temperatures for extension rate ranged from 23.1 to 27.1 °C, whereas maximum temperatures for fungal growth varied from 31.8 to 36.6 °C. On the basis of their virulence and thermal requirements, three isolates showed promise as candidates for whitefly management in Mediterranean greenhouses. Whilst in vitro production of macromolecular compounds toxic to Galleria mellonella larvae was not a requisite for virulence, ASTs of larvae injected with Sephadex G-25 fractions from candidate isolates ranged from 1.4 to 3.7 days compared with 5–6 days for non-toxic G-25 fractions. In addition, proteinase K treatment significantly reduced their toxic activity suggesting that they were proteins and revealing the potential of these isolates to be further improved through biotechnology to kill the pest more quickly.  相似文献   

7.
We conducted three experiments for management of Bemisia tabaci (Gennadius) biotype ‘B’ on tomatoes under greenhouse conditions: (i) vertically placing yellow sticky cards either parallel or perpendicular to tomato rows at a rate of 1 per 3‐m row; (ii) releasing Eretmocerus sp. nr. rajasthanicus once at 30 adults/m2 in the high whitefly density greenhouses (> 10 adults/plant), or twice at 15 adults/m2 at a 5‐day interval in the low whitefly density greenhouses (< 10 adults/plant); and (iii) using combinations of yellow sticky cards that were placed vertically parallel to tomato rows and parasitoids released once at 30/m2 in high whitefly density greenhouses or twice at 15/m2 at a 5‐day interval in low whitefly density greenhouses. Our data show that yellow sticky cards trapped B. tabaci adults and significantly reduced whitefly populations on tomato. The yellow sticky cards that were placed parallel to tomato rows caught significantly more whitefly adults than those placed perpendicular to tomato rows on every sampling date. In the treatment where parasitoids were released once at 30/m2 in high whitefly density greenhouses, the number of live whitefly nymphs were reduced from 4.6/leaf to 2.9/leaf in 40 days as compared with those on untreated plants on which live whitefly nymphs increased from 4.4/leaf to 8.9/leaf. In the treatment where parasitoids were released twice at 15/m2 in low whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.1/leaf to 1.7/leaf in 20 days as compared with those on untreated plants on which numbers of live nymphs of B. tabaci increased from 2.2/leaf to 4.5/leaf. In the treatment of yellow sticky cards and parasitoid release once at 30/m2 in high whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 7.2/leaf to 1.9/leaf, and in the treatment of yellow sticky cards and parasitoid release twice at 15/m2 at a 5‐day interval at low whitefly density, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.5/leaf to 0.8/leaf; whereas the numbers of live nymphs of B. tabaci on untreated plants increased from 4.4/leaf to 8.9/leaf. An integrated program for management of B. tabaci on greenhouse vegetables by using yellow sticky cards, parasitoids and biorational insecticides is discussed.  相似文献   

8.
The entomopathogenic fungus Aschersonia aleyrodis (Webber) is a promising fungal species against whiteflies. In this work, the pathogenicity of A. aleyrodis isolate Aa005 against MEAM1 Bemisia tabaci (Gennadius) was evaluated under laboratory and greenhouse conditions. The bioassay results indicated that the percentage of larval mortalities was concentration and age dependent. A. aleyrodis showed high pathogenicity against second and third instars and pupae with LC50 values of 7.93?×?106, 1.08?×?107, and 1.56?×?107?conidia?mL?1, respectively. The median lethal time (LT50) was lower (4.60 days) for second instars and was the highest (6.17 days) for pupae when inoculated with a concentration of 1?×?107?conidia?mL?1. Weekly sampling of immatures showed that the per cent mortality caused by A. aleyrodis at a conidial concentration of 1?×?107?conidia?mL?1 was 71.21% in small nymphs, 69.31% in large nymphs and 53.36% in pupae. The dispersion index (DI) and Lloyd’s Index of Patchiness (LIP) values indicated that the infected immatures had a tendency to aggregate. The study demonstrated that A. aleyrodis isolate A005 is an effective biocontrol agent for B. tabaci control under laboratory and greenhouse conditions.  相似文献   

9.
The cotton whitefly, Bemisia tabaci (Gennadius) B‐biotype, is fed on by a wide variety of generalist predators, but there is little information on these predator–prey interactions, especially under field conditions. In this study, a real‐time polymerase chain reaction (PCR) assay was developed to quantify B. tabaci B‐biotype remains in predator gut. The B. tabaci B‐biotype genomic DNA copy number was referred to the actual amount of BT1 isolate, the B. tabaci B‐biotype specific DNA fragment. The numbers of BT1 isolate in one B. tabaci B‐biotype egg, individual adult and a single red‐eyed nymph were 2.56 × 103, 2.56 × 104, and 1.29 × 104 copies, respectively. When Propylaea japonica adults fed on one, two, four, eight or 16 red‐eyed nymphs, the detected numbers of BT1 isolate ranged from 2.77 × 104 to 4.05 × 105 copies, forming a strong linear relationship (R2 = 0.9899). Following the consumption of two red‐eyed nymphs, prey DNA was detectable in 100% of P. japonica at t = 0, decreasing to 80.0% and 60.0% after 1–4 h and 8 h of digestion, respectively, with 3.36 × 104–1.25 × 103 BT1 isolate copies. The predation by field‐collected predators, 26 larvae of P. japonica, and of Harmonia axyridis each, Chrysopa spp. larvae (Chrysopa pallens and C. formosa, 18 individuals in total), and a single adult of Scymnus hoffmanni, 19 adults of Orius sauteri and nine adult spiders (Erigonnidium graminicolum and Neoscona doenitzi), on B. tabaci B‐biotype were quantified. Of the 99 analysed predator individuals, 3.65 × 102–4.60 × 105 copies of BT1 isolate, equivalent to 0.8–18.8 red‐eyed nymphs were detected. These results suggest that TaqMan real‐time PCR technology may provide a rapid and sensitive method for quantifying B. tabaci B‐biotype remains in predator guts and will be invaluable in assessing the food web relationship between prey and arthropod predators.  相似文献   

10.
Laboratory bioassays were conducted to determine host plant effect on pathogenicity of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuill. (Ascomycota: Hypocreales) to the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Fourth instar B. tabaci reared on cucumber, tomato, melon, green pepper, potato, eggplant, marrow, cabbage, bean or cotton, were treated with 1 × 107 conidia/ml B. bassiana EABb 93/14-Tp isolate. Mortality caused by B. bassiana significantly increased with time and it was significantly affected by the host plant on which the nymphs were reared. Mean mortality of nymphs 8 days after inoculation ranged between 52.3±7.3 for nymphs reared on cotton and 91.8±5.8 for nymphs reared on cucumber. Average survival times of nymphs treated with the fungal suspensions were also significantly influenced by the host plant, with a mean of 4.7±0.1 days for nymphs reared on cucumber, 6.6±0.2 days for cotton and 6.9±0.1 days for green pepper. The production of newly formed conidia was also affected by host plant and varied from 111000±8600 conidia/cadaver for nymphs reared on cotton to 597000±28000 conidia/cadaver for those reared on melon.  相似文献   

11.
The whiteflies Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) are major crop pests throughout the world. Although extensive research about biological control of whitefly by parasitoids and predators has been conducted, also entomopathogenic fungi can be considered as potential biological control agents. Surveys for entomopathogenic fungi were carried out in organic and conventional horticultural crops in greenhouses and open fields in Buenos Aires and Corrientes provinces, Argentina. These surveys resulted in the recovery and isolation of the following fungi from whiteflies: Lecanicillium lecanii (Zimmerm.) Zare & W. Gams, L. muscarium (Petch) Zare & W. Gams, L. longisporum (Petch) Zare & W. Gams, Isaria fumosorosea Wize and I. javanica (Frieder. & Bally) Samson & Hywel-Jones. Pathogenicity tests were conducted against T. vaporariorum nymphs using a conidial suspension (1 × 107 conidia/ml) of the fungi. A mortality rate between 26.6% and 76.6% was obtained at 7 days post-infection. These are the first records of natural infections in the southernmost region of the South American continent of L. lecanii, L. muscarium, L. longisporum and Isaria javanica (Ascomycota: Hypocreales) on T. vaporariorum and also the first report of I. fumosorosea on B. tabaci.  相似文献   

12.
The generalist predator Orius albidipennis Reut. (Hem., Anthocoridae) and entomopathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin (Ascomycota: Clavicipitaceae) are important biocontrol agents of Thrips tabaci Lindeman (Thys., Thripidae) in most greenhouses. In this study, we estimated searching time, feeding time and predation rate in O. albidipennis feeding on untreated and treated thrips larvae which had been inoculated with three concentrations of M. anisopliae V275 at four time intervals; 0, 24, 48 and 72 h after infestation. Applied concentrations were 1×103, 2×104 and 2×105 conidia/mL which roughly correspond to the LC25, LC50 and LC75 for second instar-larvae. O. albidipennis responded to the presence of the M. anisopliae on the treated hosts by increasing the searching time and decreasing feeding time and predation rate levels. It was also able to detect and avoid treated patches.  相似文献   

13.
Matsucoccus matsumurae (Kuwana) (Hemiptera: Coccoidea: Matsucoccidae) is an invasive alien species and a destructive pest of two native Chinese pines, Pinus tabulaeformis Carr. and P. massoniana Lamb., throughout the eastern regions of China. The pathogenicity of three entomopathogenic fungi, Lecanicillium lecanii strain V3.4504 and V3.4505, Fusarium incarnatum-equiseti strain HEB01 and Lecanicillium fungicola strain HEB02, against M. matsumurae was tested in four instars, to evaluate their potential as a biological control agent. The results showed that the four strains caused disease and death of the scale insect, among which the L. lecanii strains V3.4504 and V3.4505 displayed stronger virulence than the F. incarnatum-equiseti strains HEB01 and L. fungicola strain HEB02 to M. matsumurae in the 2nd-instar nymphs and the adult females. Furthermore, L. lecanii V3.4505 was most virulent to M. matsumurae. The adult females and the male 3rd-instar nymphs of M. matsumurae were susceptible to L. lecanii V3.4505; the adult females were more susceptible at LT50 = 1.96 than the 3rd-instar nymphs at LT50 = 5.67. The body surface structure, cuticle thickness and wax secretions of M. matsumurae impacted the fungal infection. L. lecanii is a promising biocontrol agent, and newly emerged male 3rd-instar nymphs and adult females are a crucial period of the insect’s life cycle for M. matsumurae biocontrol.  相似文献   

14.
The pathogenicity and virulence of 10 isolates of entomopathogenic fungi from the soil of lodging pens of dairy production units in Aguascalientes, Mexico, on adults of Stomoxys calcitrans and Musca domestica were determined. All isolates were pathogenic when exposed by aspersion to a concentration of 1×108 conidia/ml, causing between 20.3 and 91.7% mortality in S. calcitrans and between 31 and 91.7% in M. domestica at 7 days post-exposure; in S. calcitrans isolates of Beauveria bassiana (Bb114) and Metarhizium anisopliae (Ma135), sensu lato, were the most noteworthy as mortality reached above 90% with an LC50 of 3.5×105 conidia/ml for Bb114, while for Ma135 reached 1.6×104 conidia/ml. In M. domestica Ma134 and Ma135 showed mortality above 90% with an LC50 of 4.3×104 and 1.4×105 conidia/ml, respectively.  相似文献   

15.
The process of strain selection is an important step in the development of insect pathogens for biological control. Bioassays were conducted in the laboratory to evaluate the efficacy of different methods of inoculation using Rhipicephalus pulchellus Gerstäcker (Acari: Ixodidae) as a model. Initially, an oil-based formulation of Metarhizium anisopliae (Metsch.) Sorok. (Ascomycota: Hypocreales) titred at 109 conidia ml?1 was applied to R. pulchellus adults using a Burgerjon spray tower or a microapplicator. Inoculation by microapplicator yielded poor results (25.0% tick mortality) compared to Burgerjon’s spray tower (52.3% tick mortality), although the mean number of fungal conidia on R. pulchellus adults was lower (1.5 × 104 ± 1.1 × 103 conidia ml?1) after spraying by Burgerjon’s spray tower compared to 1 × 106 conidia ml?1 obtained with the microapplicator. Thus, inoculation by Burgerjon’s spray tower was selected for further investigations. Different modes of inoculation were tested and included direct spray of inoculum on the tick and substrate (SS), direct spray on the substrate and tick followed by transfer of the tick to clean uncontaminated Petri dish (SP) or indirect inoculation of ticks through substrate (SW). The LC50 values following contamination of nymphs (LC50 = 1.4 × 107 conidia ml?1) and adults (LC50 = 6.7 × 107 conidia ml?1) in SS were significantly lower compared to SP; nymphs (LC50 = 5.7 × 108 conidia ml?1) and adults (LC50 = 5.3 × 109 conidia ml?1) and SW; nymphs (LC50 = 5 × 108 conidia ml?1). Although the LC50 value in SS was the lowest, it recorded the highest tick mortality among control ticks (24.2% at 2 weeks post-treatment) and (23.3% at 3 weeks post-treatment) in nymphs and adults respectively compared to SP (2.5 and 5.8%, respectively) and SW (0.0 and 0.0). Results show that among the modes of inoculation tested, SP was the most appropriate for inoculating R. pulchellus adults. SW and SP were identified as appropriate techniques for infecting the R. pulchellus nymphs with conidia formulated in oil.  相似文献   

16.
Abstract The parasitoids in the genera of Encarsia and Eretmocerus (Hymenoptera: Aphelinidae) are important biological control agents of whiteflies, and some of them not only parasitize hosts but also kill them with strong host‐feeding capacity. Two whitefly parasitoid species, Encarsia sophia and Eretmocerus melanoscutus were examined to determine if mating and host density affected their host feeding and parasitism. The whitefly host, Bemisia tabaci, was presented to these two wasp species in densities of 10, 20, 30, 40, 50 and 60 third‐instar nymphs per clip cage. Mated whitefly parasitoid females fed on more hosts than unmated females under a range of host densities (under all six host densities for En. sophia; under the densities of 40 nymphs or more for Er. melanoscutus). Meanwhile, mated females parasitized more whitefly nymphs than unmated females under all host densities for both species. With increase of host density, mated or unmated Er. melanoscutus females killed more hosts by host feeding and parasitism. Mated En. sophia females killed more hosts by host feeding with increase of host density, whereas unmated females did not parasitze whitefly nymphs at all. Our results suggest that only mated female parasitoids with host‐feeding behavior should be released in crop systems to increase their bio‐control efficiency.  相似文献   

17.
In order to replace the conventional chemical pesticides, extensive researches have been done on entomopathogenic fungi. Entomopathogenic fungus Beauveria bassiana is an important biocontrol agent against major economic pests and is being employed in Integrated pest management (IPM) along with synthetic pesticides. Cabbage aphid Brevicoryne brassicae L. is one of the important pests of Brassicaceae family. Therefore, in this research, the virulence isolate of B. brassicae (IRAN 429C) was investigated on adults of cabbage aphid under laboratory conditions. The experiments were conducted at 25 ± 2 °C, 60 ± 10 R. H. and a photoperiod of 16:8 (L: D). After preliminary experiments, the adult aphids were treated with fungal concentrations of 1 × 103 to 1 × 107 spores/ml. Probit analysis was conducted to calculate LC50 and LC95 values for the isolate. Positive correlation was observed between concentrations and pest mortality. LC50 and LC95 values calculated for IRAN 429C isolate are 2.04 × 105 and 1.82 × 108, respectively. The mortality was counted one day after the treatment and then continued for 14 days. Cumulative mortality for 14 days after treatment varied from 54% for IRAN 429C at low concentration (103 conidia/ml) to 83% at high concentration (107 conidia/ml). The lowest LT50 was obtained at 7.67 days for IRAN 429C isolate at concentration 1 × 107 spore/ml. According to the insecticidal activity of mentioned fungi on cabbage aphid, it can be used in biocontrol programmes of B. brassicae.  相似文献   

18.
Seven isolates of Lecanicillium lecanii (Zimmermann) Zare &; Gams isolated in Spain from infected aphids were characterized using sequences of the Internal Transcribed Spacer (ITS) regions and also based on morphological and physiological characteristics. Four of these seven L. lecanii isolates were selected to assess their virulence against nymphs of Myzus persicae (Sulzer), Nasonovia ribisnigri (Mosley), Macrosiphum euphorbiae (Thomas) and Aphis gossypii Glover. Mortality (%), lethal concentration 50 (LC50) and lethal time 50 (TC50) were calculated. The analysis of the sequences of ITS region confirmed that the new isolates were clearly Lecanicillium lecanii. The set of isolates had similar radial growth (51.5–54.0 mm), except for ICAL1 (39 mm). The germination time 50 (GT50) varied between 10.7 h (ICAL3) and 13 h (ICAL5). The isolate ICAL6 showed the highest value for conidial production (3.4 × 108 con ml?1) and also produced the highest mortality for M. persicae (95%) and was more virulent than the commercial product Vertalec® (91.6%).  相似文献   

19.
The brown planthopper, Nilaparvata lugens, is one of the most harmful insect pests of rice crops in Asian countries. To find an effective biological control agent against this pest, we investigated the bacterial flora of field N. lugens collected from Jiangsu Province, China, in 2012 and tested its insecticidal activity. A novel bacterium strain, S-JS1, was isolated from N. lugens nymphs and adults and showed a high level of insecticidal activity. Based on its phenotypic, physiological and biochemical properties, and its 16S rRNA gene phylogeny, the isolate was assigned to Serratia marcescens; the name S. marcescens S-JS1 is proposed. The pathogenicity of S-JS1 against the third-instar nymphs, and the macropterous and the brachypterous adults of N. lugens were compared. The median lethal concentration (LC50) values of S-JS1 against the brachypterous adult were the lowest (LC50, 1.53?×?108 colony forming units (cfu)/ml), followed against the macropterous adult (LC50, 1.65?×?109?cfu/ml) and third-instar nymphs (LC50, 1.86?×?109?cfu/ml) at 5 days post-infection. The median lethal time values of 8?×?108?cfu/ml S. marcescens S-JS1 against the brachypterous adult, macropterous adult, and third-instar nymph were 4.5, 5.5, and 5.7 days, respectively. These results indicate that the S-JS1 isolate appears to be a promising S. marcescens strain with strong biocontrol potential against N. lugens.  相似文献   

20.
The pathogenicity of four isolates each of the entomopathogenic fungi, Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. to apterous adult Aphis craccivora Koch was evaluated in the laboratory at 4 concentrations of conidia. All fungi isolates tested were found to be pathogenic to the insect but their virulence varied among species and isolates within species. Three isolates, B. bassiana CPD 11 and M. anisopliae CPD 4 and 5 caused significantly higher mortality than the other isolates at the various concentrations tested causing mortality of between 58–91%, 64 to 93% and 66–100%, respectively, at 7 days post treatment. At the highest concentration of 1 × 108conidiaml‐1, these isolates produced the shortest LT50s of 3.5, 3.6 and 3.4 days, respectively. Their LC50s were 6.8 × 105, 3.1 × 105 and 2.7 × 105 conidia ml‐1, respectively. The results indicate that these isolates are promising candidates for the control of the cowpea aphid but their pathogenicity to various aphid non‐target beneficial organisms within the cowpea agroecosystem warrant further investigation before initiating field control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号