首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cigarette smoking is ranked among the leading risk factors in the etiology of atherosclerotic vascular disease. The mechanisms, however, that link cigarette smoking to increased incidence of atherosclerosis are not understood. The adherence of circulating monocytes to the endothelium, migration into the subendothelium, and subsequent formation of foam cells are principal initial events in the development of atherosclerosis. We therefore determined whether cigarette smoke caused increased adherence of monocytes to endothelial cells and the cellular mechanism of this increased adherence. Cigrette smoke condensate (CSC), the particulate fraction of cigarette smoke derived from 2R1 standard research cigarettes, at a concentration of 25–30 μg/ml (average yield of CSC is 26.1 mg/cigarette), augmented (70–90%) basal adherence of human peripheral blood monocytes to a cultured monolayer of endothelial cells derived from bovine aorta (BAEC) and human umbilical vein (HUVEC). There was a concomitant increase in the expression of CD11b ligand on the surface of monocytes as determined by flow cytometry, utilizing FITC conjugated Mab MO-1 (CD11b). However, nicotine (1–15 μg/ml) and cadmium sulfate (10 μg/ml), constituents of CSC, individually or in combination had no effect either on CD11b expression or adherence of monocytes to endothelial cells. Treatment of HUVEC with CSC for 60 min also resulted in an increased expression of ICAM-1 and ELAM-1 as determined by mean fluorescence intensity of ICAM-1 and ELAM-1 labeled cells in flow cytometric analysis. The CSC induced expression of CD11b in monocytes was optimal at 25–30 min and was inhibited by protein kinase C inhibitors, staurosporine and H-7, and also by baicalein, a lipoxygenase inhibitor. Similarly, CSC induced ICAM-1 and ELAM-1 expression in HUVEC was inhibited by protein kinase C inhibitors. CSC stimulated the adherence of human monocytes but not the monocytic cell lines HL-60, U937, and THP-1 to endothelial cells. The CSC stimulated adherence of human monocytes was inhibited (80%) by MAb to CD11b and 50% by Mab to ICAM-1 and ELAM-1. These results suggest that cigarettee smoke particulate constituents activate protein kinase C, leading to increased surface expression of adhesive ligand CD11b on peripheral blood monocytes and counter receptor(s) ICAM-1 and ELAM-1 in endothelial cells. The expression of ligand and counter receptor leads to potentiated adherence of monocytes to endothelial cells, an initial event in the pathogenesis of cigarette smoke induced inflammatory response in the vessel wall. © 1994 Wiley-Liss, Inc.  相似文献   

2.
HMG-CoA reductase inhibitors (statins) are believed to reduce coronary heart disease by mechanisms in addition to their well-known cholesterol-lowering effect. We studied the effect of these drugs on monocyte cell adhesion to endothelium. Pretreatment of monocytic cells (U937, THP-1, human CD14(+) monocytes) with 0.01-10 microM concentrations of atorvastatin, cerivastatin, or simvastatin significantly reduced cell adhesion to endothelium. In contrast, pretreatment of endothelium with statins did not affect adhesion of monocytes. Adhesion of monocytes to vascular cell adhesion molecule-1-coated dishes was reduced by these drugs. Cerivastatin also reduced PMA induction of NF-kappaB. Since monocyte adhesion to endothelium is an early event in atherogenesis, treatment with statins in prevention of coronary heart disease may have additional salutary effects to lowering of plasma LDL cholesterol. Our results indicate that the reduction of monocyte adhesion by HMG-CoA reductase inhibitors may be considered as a class effect.  相似文献   

3.
Neuropeptide Y (NPY), 36-amino acid amidated peptide expressed in central and peripheral neurons, regulates a variety of physiological activities, including food intake, energy expenditure, vasoconstriction, anxiolysis, nociception and ethanol consumption. NPY binds to a family of G-protein coupled receptors whose activation results in inhibition of adenylyl cyclase activity. To more fully characterize the signal transduction pathways utilized by the NPY receptor subtypes, the pathways leading to phosphorylation of the extracellular signal regulated protein kinases 1 and 2 (ERK) have been compared in CHO cells expressing each of the four cloned human NPY receptor subtypes, Y(1), Y(2), Y(4) and Y(5). NPY Y(1), Y(2), Y(4) and Y(5) receptor-mediated ERK phosphorylation was blocked by pertussis toxin (PTX) exposure, indicating that all four receptors are coupled to inhibitory G(i/o) proteins. Exposure to the protein kinase C (PKC) inhibitor GF109203X diminished Y(1), Y(2) and Y(4) receptor-mediated ERK phosphorylation but completely blocked Y(5) receptor-mediated ERK phosphorylation. Additionally, Y(5) receptor-mediated ERK phosphorylation was inhibited by the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin to a greater extent than was Y(1)-mediated ERK phosphorylation. These results demonstrate that in CHO cells, the Y(5) receptor and the Y(1), Y(2) and Y(4) receptors utilize different pathways to activate ERK.  相似文献   

4.
Discordant xenograft models undergoing delayed rejection response are characterized by xenograft infiltration with host monocytes and NK cells, associated with the release of large quantities of pro-inflammatory cytokines, such as TNF-alpha. In the present study, human monocytes (PBMo)/NK cells (PBNK) isolated from peripheral blood and cultured porcine aortic endothelial cells (PAEC) treated with recombinant human TNF-alpha (rhTNF-alpha) were used to investigate their adhesive interactions and mAbs against porcine E-selectin, human CD11a and CD49d were used to test their relative contributions to such intercellular adhesions. The PBMo exhibited significantly greater adherence to resting (unstimulated) PAEC than PBNK. The rhTNF-alpha upregulated E-selectin and vascular cell adhesion molecule-1 (VCAM-1) expression on PAEC and augmented the adhesiveness of PAEC for PBMo and PBNK in a time- and dose-dependent manner. In mAb blocking assays, anti-E-selectin, anti-CD11a and anti-CD49d mAbs did not inhibit PBMo adherence to rhTNF-alpha-stimulated PAEC when used singly, but resulted in a maximal inhibitory effect when used in combination. Regarding PBNK, anti-E-selectin mAb had no marked influence on PBNK adherence. The combined use of anti-CD11a and anti-CD49d mAbs produced additive reduction in the PBNK binding to rhTNF-alpha-stimulated PAEC, even to far below baseline (unstimulated) levels. Therefore, it is concluded that human TNF-alpha promotes the adhesiveness of PAEC for human monocytes and NK cells and that the mechanism underlying the increased adherence differs for PBMo and PBNK.  相似文献   

5.
Binding of plasminogen to cultured human endothelial cells   总被引:26,自引:0,他引:26  
Endothelial cells are known to release the two major forms of plasminogen activator, tissue plasminogen activator (TPA) and urokinase. We have previously demonstrated that plasminogen (PLG) immobilized on various surfaces forms a substrate for efficient conversion to plasmin by TPA (Silverstein, R. L., Nachman, R. L., Leung, L. L. K., and Harpel, P. C. (1985) J. Biol. Chem. 260, 10346-10352). We now report the binding of human PLG to cultured human umbilical vein endothelial cell (HUVEC) monolayers, utilizing a newly devised cell monolayer enzyme-linked immunosorbent assay system. PLG binding to HUVEC was concentration dependent and saturable at physiologic PLG concentration (2 microM). Binding of PLG was 70-80% inhibited by 10 mM epsilon-aminocaproic acid, suggesting that it is largely mediated by the lysine-binding sites of PLG. PLG bound at an intermediate level to human fibroblasts, poorly to human smooth muscle cells, and not at all to bovine smooth muscle or bovine endothelial cells; unrelated proteins such as human albumin and IgG failed to bind HUVEC. PLG binding to HUVEC was rapid, reaching a steady state within 20 min, and quickly reversible. 125I-PLG bound to HUVEC with an estimated Kd of 310 +/- 235 nM (S.E.); each cell contained 1,400,000 +/- 1,000,000 (S.E.) binding sites. Functional studies demonstrated that HUVEC-bound PLG is activatable by TPA according to Michaelis-Menten kinetics (Km, 5.9 nM). Importantly, surface-bound PLG was activated with a 12.7-fold greater catalytic efficiency than fluid phase PLG. These results indicate that PLG binds to HUVEC in a specific and functional manner. Binding of PLG to endothelial cells may play a pivotal role in modulating thrombotic events at the vessel surface.  相似文献   

6.
Binding of human thrombin to cultured human endothelial cells.   总被引:6,自引:0,他引:6  
Binding of thrombin to monolayer cultures of human umbilical vein endothelium is studied. Binding is measured as inhibition by unlabeled ligand of the binding of 125I-thrombin to the cells. Radioactivity bound to cultures at equilibrium is measured after draining but not washing the cells. To correct for unremoved supernatant, 131I-albumin is included as a second label in the medium. Equilibrium between bound and free thrombin is attained within 1 min, and Scatchard analysis indicates a population of approximately 3 x 10(3) sites/cell with a dissociation constant of 10(-10) M, and a larger population with a dissociation constant greater than 10(-8) M. The two populations of sites are also indicated by a biphasic dissociation of bound label. Thrombin inactivated with diisopropyl fluorophosphate binds to the same receptor, with an affinity similar to that of active thrombin. Binding is unaffected by albumin (an acidic protein) and cytochrome c (a basic protein). Cultures of umbilical cord smooth muscle and fibroblasts bind thrombin at least 100 times more weakly than endothelium, and no binding to erythrocytes or a monolayer culture of mouse neuroblastoma is detected.  相似文献   

7.
In early studies we found that IL-1 stimulated endothelial cells (EC) to produce platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Inasmuch as this phospholipid has a wide range of biologic activities, including polymorphonuclear leukocytes (PMN) aggregation and chemotaxis, we investigated whether EC-associated PAF could contribute to IL-1-induced PMN adhesion to EC. When four selective PAF antagonists were added to IL-1-stimulated EC during the PMN adhesion assay, adhesion was reduced in a concentration-related way. Similarly, pre-treatment of PMN with PAF before the adhesion assay to induce desensitization to this phospholipid reduced PMN adhesion to IL-1-treated EC. However, comparing the time course and the concentration response curve of IL-1-induced EC adhesivity and PAF synthesis, we found that increased EC adhesivity to PMN required a shorter incubation time and lower concentration of IL-1 to become apparent than PAF production. When acetyl-coenzyme A was added to EC cultures at a concentration that raised PAF synthesis by 60%, no significant increase in PMN adhesion was observed. In addition, after 9 to 10 doublings, the EC ability to synthesize PAF decreased by 85 to 90%, whereas IL-1-induced EC adhesivity to PMN was only slightly diminished. When IL-1-alpha and -beta were tested on EC, we observed that both were equally active in promoting PMN adhesion to EC but only the alpha-form was able to stimulate PAF production. When PMN were seeded on IL-1-treated EC, increased amounts of PAF were detected even when EC were fixed; in addition, the inhibitory effect of a PAF antagonist was evident also in these conditions. Overall these results indicate that IL-1-induced PAF production by EC does not significantly contribute to PMN adhesion to them. We hypothesize that the observed inhibitory effect of PAF antagonists and PAF desensitization of PMN might be directed at PAF produced by PMN themselves during adhesion to IL-1-treated EC.  相似文献   

8.
Enhanced monocyte adhesion to endothelial cells is an early event in atherogenesis. It has been shown that C‐reactive protein (CRP) plays a key role in atherogenesis. Here, we investigated the effects of CRP on monocyte‐endothelial cell adhesion and tested the hypothesis that NADPH oxidase (NOX)‐mediated oxidative stress might play a key role in CRP‐induced monocyte‐endothelial cell adhesion. Firstly, 36 patients with carotid intima‐media thickness (IMT) incrassation and 34 controls were enrolled in this study. The levels of glucose, lipids, CRP, monocyte chemotractant protein (MCP‐1), malondialdehyde (MDA), and protein carbonylation were analyzed. The results showed that carotid IMT was associated with abnormal lipid metabolism, including elevated CRP, triglycerides (TG) (P < 0.01) and decreased high density lipoprotein (HDL) level (P < 0.05). The levels of CRP and MCP‐1 in patients with carotid IMT incrassation were increased compared with the controls (P < 0.01). Moreover, patients with carotid IMT incrassation displayed enhanced MDA and protein carbonylation levels (P < 0.01), accompanied by activation and up‐regulation of NOX in monocytes (P < 0.05) compared with the controls. The monocytes isolated from five healthy donors were used for in vitro experiments. Reactive oxygen species (ROS) production and NOX expression in monocytes were examined. The results also indicated that CRP could promote the adhesion of monocyte‐endothelial cell by up‐regulation of MCP‐1 expression (P < 0.05). Importantly, NFκ B and p38 MAPK signaling pathways, which were activated by NOX‐derived ROS, were involved in CRP‐induced monocyte‐endothelial cell adhesion and up‐regulation of MCP‐1 expression. These data suggested that CRP could promote the adhesion of monocytes to endothelial cells via NOX‐mediated oxidative stress. J. Cell. Biochem. 113: 857–867, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
The possible role of fish mast cells in regulating neutrophil adhesion to vascular endothelial cells was studied using primary cultures of tilapia vascular endothelial cells. The endothelial cell monolayer, which was cultured in 96 well plates, was stimulated for appropriate periods with tilapia mast cell (tMC)-lysates or with Leibovitz-15 (L-15) medium, as a control, and peripheral neutrophils were added into each well after removal of the lysates. After 30 min incubation, cells in the wells were fixed with formalin and non-adherent neutrophils were removed. The cells were stained with Giemsa and neutrophil adhesion was observed microscopically. Although some neutrophils attached to the endothelial cells without stimulation, neutrophil adhesion was enhanced after the incubation of the endothelial cells with tMC-lysates. Neutrophil adhesion was maximal 6 h after the lysate stimulation, with a six-fold increase compared to the control. Neutrophil adhesion also increased when the endothelial cells were stimulated with neutrophil lysates, lipopolysaccharide and zymosan-treated tilapia sera. These results indicate that fish vascular endothelial cells express some neutrophil adhesion molecule(s) after stimulation with various substances.  相似文献   

10.
Defensins, a family of small, cationic, antimicrobial peptides, are found in mammals, insects and plants. alpha-defensins are stored in granules of neutrophils and released upon activation by exocytosis. It was shown here that human neutrophil peptide (HNP), at concentrations of 10(-8) -10(-9) M, up-regulated the expression of TNF-alpha and IL-1 beta in monocytes activated with Staphylococcus aureus or PMA, while expression of IL-10 mRNA was down-regulated and production of IL-8 was not affected. HNP alone was unable to induce TNF-alpha or IL-1 beta expression in resting monocytes. At concentrations of 10(-4) -10(-5)M, HNP was cytotoxic for monocytes in serum-free medium. The cytotoxicity was abrogated in the presence of serum, while a cytokine-modulating effect of HNP was observed in the presence of serum and in whole blood, suggesting that this mechanism may function in vivo. Similarly, serum did not abrogate bactericidal activity of HNP. It was also demonstrated herein that HNP at 10 (-8) -10(-9) M, attenuated the inhibitory action of dexamethasone on TNF-alpha production. In parallel to monocyte studies, we have showed that HNP at concentrations ranging from 10(-9)M to 10(-6)M caused about 5-fold suppression of VCAM-1 expression in TNF-alpha-activated human umbilical vein endothelial cells, while the ICAM-1 expression was not affected. Our findings suggest that neutrophil defensins have the potential to modulate the inflammatory responses through regulation of cytokine production and adhesion molecule expression.  相似文献   

11.
Interactions between monocytes and endothelial cells play an important role in the pathogenesis of atherosclerosis, and monocyte adhesion to arterial endothelium is one of the earliest events in atherogenesis. Work presented in this study examined human monocyte adherence to primary human aortic endothelial cells following monocyte infection with Chlamydia pneumoniae, an intracellular pathogen associated with atherosclerosis by a variety of sero-epidemiological, pathological and functional studies. Infected monocytes exhibited enhanced adhesion to aortic endothelial cells in a time- and dose-dependent manner. Pre-treatment of C. pneumoniae with heat did not effect the organism's capacity to enhance monocyte adhesion, suggesting that heat-stable chlamydial antigens such as chlamydial lipopolysaccharide (cLPS) mediated monocyte adherence. Indeed, treatment of monocytes with cLPS was sufficient to increase monocyte adherence to endothelial cells, and increased adherence of infected or cLPS-treated monocytes could be inhibited by the LPS antagonist lipid X. Moreover, C. pneumoniae-induced adherence could be inhibited by incubating monocytes with a mAb specific to the human beta 2-integrin chain, suggesting that enhanced adherence resulted from increased expression of these adhesion molecules. These data show that C. pneumoniae can enhance the capacity of monocytes to adhere to primary human aortic endothelial cells. The enhanced adherence exhibited by infected monocytes may increase monocyte residence time in vascular sites with reduced wall shear stress and promote entry of infected cells into lesion-prone locations.  相似文献   

12.
A critical component of immune responsiveness is the localization of effector cells at sites of inflammatory lesions. Adhesive molecules that may play a role in this process have been described on the surfaces of both lymphocytes and connective tissue cells. Adhesive interactions of T lymphocytes with fibroblasts or endothelial cells can be inhibited by preincubation of the fibroblasts or endothelial cells with antibody to intercellular adhesion molecule 1 (CD54) or by preincubation of the T cells with antibody to lymphocyte function-associated Ag 1 (CD11a/CD18), molecules shown to be important in several other cell-cell adhesive interactions. Here we show that gamma-irradiation of human T lymphocytes impaired their ability to adhere to both fibroblasts and endothelial cells. This impairment was not associated with a loss of cell viability or of cell surface lymphocyte function-associated Ag 1 expression. gamma-Irradiation of T cells is known to result in the activation of ADP-ribosyltransferase, an enzyme involved in DNA strand-break repair, causing subsequent depletion of cellular nicotinamide adenine dinucleotide (NAD) pools by increasing NAD consumption for poly(ADP-ribose) formation. Preincubation of T cells with either nicotinamide or benzamide [corrected], both known inhibitors of ADP-ribosyltransferase, completely reversed the suppressive effects of gamma-irradiation on T cell adhesion. The maintenance of adhesion was accompanied by inhibition of irradiation-induced depletion of cellular NAD. These experiments suggest that the impairment of cellular immune function after irradiation in vivo may be caused, in part, by defective T cell emigration and localization at inflammatory sites.  相似文献   

13.
14.
Type 1 diabetic (T1D) patients are hyperglycemic and also show elevated blood levels of ketone bodies, particularly acetoacetate (AA) and β-hydroxybutyrate (BHB). T1D patients have a greater risk of developing endothelial dysfunction and cardiovascular disease (CVD). Supplementation with cysteine-rich milk proteins has been shown to be beneficial in improving various biomarkers of endothelial dysfunction and CVD. This study examines whether l-cysteine (LC) per se prevents monocyte adhesion to endothelial cells, a critical step in endothelial dysfunction. Human umbilical vein endothelial cells and THP-1 monocytes were pretreated with and without LC (500 μM) for 2 h and then exposed to ketones (AA or BHB, 0–4 mM) and/or high glucose (HG) (25 mM) for 24 h. This study shows that LC reduces HG and ketone-induced ROS production, ICAM-1 expression, and the adhesion of monocytes to endothelial cells. This study provides a biochemical mechanism by which milk protein supplementation can be beneficial in preventing the excess endothelial dysfunction and CVD seen in diabetic patients.  相似文献   

15.
Leukocyte adhesion to endothelial cells   总被引:2,自引:0,他引:2  
The adhesion of leukocytes to endothelium is a physiological phenomenon which is the first step for leukocyte emigration. The adhesion can be dramatically increased in pathological situations such as inflammation and vascular diseases. The molecular basis of leukocyte-endothelium interaction has been largely investigated in the last ten years. Using monoclonal antibodies it is possible to characterize the leukocyte adhesion molecule (LeuCAM) also named CD11/CD18 complex. These molecules responsible for leukocyte adhesion are heterodimers consisting of a common beta subunit and different subunit CD11a/CD18 corresponding to LFA-1; CD11b/CD18 to Mac1/Mol; CD11c/CD18 to GP150-95. Beside these receptors, other leukocyte structures such as the fibronectin receptors are involved in the adhesive process. On the endothelial cell side specialized structures implicated in leukocyte adhesion have been identified. Structures like Intercellular Adhesion Molecule (ICAM) are expressed on endothelial cells in the absence of stimulation, while other receptors Endothelial Leukocyte Adhesion Molecule (ELAM) are only detectable on activated endothelial cells. Cytokines such as IL-1 induced the expression of ELAM, increased the number of ICAM and Human Leukocyte Antigens (HLA) DR, DP, DQ. In various pathological circumstances, namely extracorporeal circulation, Acute Respiratory Distress Syndrome (ARDS), hypercholesterolemia and diabetes mellitus increased leukocyte adhesion has been reported and is potentially responsible for vascular damage. Therefore, the modulation of leukocyte-endothelial cell interactions is a possible target for antithrombotic and antiatherosclerotic therapy.  相似文献   

16.
Intermittent hypoxia (IH), the key property of obstructive sleep apnea (OSA), is closely associated with endothelial dysfunction. Endothelial-cell-specific molecule-1 (ESM-1, Endocan) is a novel, reported molecule linked to endothelial dysfunction. The aim of this study is to evaluate the effect of IH on ESM-1 expression and the role of ESM-1 in endothelial dysfunction. We found that serum concentration of ESM-1, inter-cellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) is significantly higher in patients with OSA than healthy volunteers (p < 0.01). The expression of ESM-1, hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) was significantly increased in human umbilical vein endothelial cells (HUVECs) by treated IH in a time-dependent manner. HIF-1α short hairpin RNA and vascular endothelial growth factor receptor (VEGFR) inhibitor inhibited the expression of ESM-1 in HUVECs. ICAM-1 and VCAM-1 expressions were significantly enhanced under IH status, accompanied by increased monocyte–endothelial cell adhesion rate ( p < 0.001). Accordingly, ESM-1 silencing decreased the expression of ICAM-1 and VCAM-1 in HUVECs, whereas ESM-1 treatment significantly enhanced ICAM-1 expression accompanied by increasing adhesion ability. ESM-1 is significantly upregulated by the HIF-1α/VEGF pathway under IH in endothelial cells, playing a critical role in enhancing adhesion between monocytes and endothelial cells, which might be a potential target for IH-induced endothelial dysfunction.  相似文献   

17.
Using oxidized low-density lipoprotein (LDL)-injured vascular endothelial cells (ECs) as target cells, peptides specifically binding to the injured ECs were screened from a phage-displaying peptide library by using the whole-cell screening technique after three cycles of the ““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““adsorption-elution-amplification““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““ procedure. Positive phage clones were identified by ELISA, and the inserted amino acid sequences in the displaying peptides were deduced from confirmation with DNA sequencing. The adhesion rate of ECs to monocytes was evaluated by cell counting. The activity of endothelial nitric oxide synthase (eNOS), and the expression levels of caveolin-1 and intercellular adhesion molecule-1 (ICAM-1) were determined by Western blotting. Six positive clones specifically binding to injured ECV304 endothelial cells were selected from fourteen clones. Interestingly, four phages had peptides with tandem leucine, and two of these even shared an identical sequence. Functional analysis demonstrated that the YCPRYVRRKLENELLVL peptide shared by two clones inhibited the expression of ICAM-1, increased nitric oxide concentration in the culture media, and upregulated the expression of caveolin- 1 and eNOS. As a result, the adhesion rate of monocytes to ECV304 cells was significantly reduced by 12.1%. These data suggest that the anti-adhesion effect of these novel peptides is related to the regulation of the caveolin- 1/nitric oxide signal transduction pathway, and could be of use in potential therapeutic agents against certain cardiovascular diseases initiated by vascular endothelial cell damage.  相似文献   

18.
Monocyte adherence to endothelial cells (EC) is selectively increased during inflammation. The mechanisms underlying monocyte-EC interaction indicated the involvement of surface-adhesion molecules on monocytes and EC. In earlier studies we noticed that the monocyte-specific mAb, designated mAb 63D3, in contrast to mAb against the beta 2-integrin molecules, inhibited the monocyte binding to monolayers of rIL-1 alpha-stimulated venous EC. The aim of the present study was to further characterize the Ag recognized by mAb 63D3 and to investigate the specific contribution of this Ag to the adherence of monocytes to cultured human macrovascular venous or arterial EC. Flow cytometric analysis demonstrated that the 63D3 Ag is expressed exclusively on the surface of peripheral blood monocytes. SDS-PAGE analysis of mAb 63D3 immunoprecipitates of 125I-labeled human monocyte surface proteins revealed that the target Ag for mAb 63D3 is a 52- to 55-kDa molecule identical to the myeloid differentiation protein CD14. Stimulation of EC with rIL-1 alpha or rTNF-alpha for 4 or 24 h or rIFN-gamma for 24 h increased (p less than 0.005) the number of monocytes bound to both types of EC. This cytokine-induced increase in monocyte adherence was significantly (p less than 0.0005) inhibited when the monocytes were coated with various mAb against CD14. The binding of monocytes to nonstimulated venous or arterial EC was not inhibited by anti-CD14 mAb. Our results lead to the conclusion that CD14 molecules, which on basis of their structure and m.w. are not related to the beta 2-integrin family of heterodimeric leukocyte adhesion molecules, participate in the binding of monocytes to cytokine-stimulated EC.  相似文献   

19.
We have probed the mechanisms by which severe heat alters cytosolic calcium ion concentrations (Cai) in individual cultured human endothelial cells (ATCC ♯1998). Cells adhering to glass coverslips were heated to as high as 50°C and Cai determined by means of a fluorescence laser imaging system using the calcium-sensitive dye, indo-1, in the presence of thapsigargin, and in Na-free and Ca-free media. Baseline Cai varied between 175–225 nM. When cells were heated to 50°C in a complete Ca-containing medium, there was first a transient fall in Cai, then a rapid rise of 50–100 nM in Cai, followed by a slower, secondary rise of 50–75 nM. Depleting the intracellular calcium stores with thapsigargin blocked both the transient fall and the secondary rise in Cai. Placement of the cells into a Ca-free medium blocked both the transient fall and the initial rapid rise, while use of a Na-free buffer prevented the initial rapid rise only. These data suggest that in human endothelial cells, extreme heat accelerates the CaATPase pumps of the intracellular Ca stores causing the transient fall in Cai which is soon followed by activation of the reverse mode of the Na/Ca exchanger to cause the initial rapid rise in Cai. The Ca-release channels of the intracellular stores become activated by heat to cause the secondary, slow rise in Cai. This preliminary work indicates that the application of heat to cultured cells can be a useful probe to examine the kinetics and unmask mechanisms of intracellular Ca fluctuations.  相似文献   

20.
In this study we have demonstrated that infection of human umbilical vein endothelial cells (HUVEC) with Herpes simplex virus type 1 (HSV-1) resulted in an increased adherence of monocytes (MC). This enhanced adherence occurred at 3 h post infection (p.i.) when about 20% of the monolayer is infected and when there is no cytopathic effect observable in the monolayer. The adherence of human MC to virus-infected HUVEC monolayers proved to be effective and reproducible if a multiplicity of infection (MOI) of ten and a ratio of number of MC to number of HUVEC of 5 was used. The increased adherence was also induced by incubating non-infected HUVEC with the 'supernatant medium' of the HSV-1 infected cells, showing that soluble factors induced by viral infection are responsible for the increased adherence. The augmentation of MC adherence to infected endothelium was sensitive to tunicamycin treatment, suggesting that the MC adherence is probably mediated by glycoproteins expressed on the HUVEC membranes by virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号