首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The second messenger cyclic diguanylate (c-di-GMP) controls the transition between motile and sessile growth in eubacteria, but little is known about the proteins that sense its concentration. Bioinformatics analyses suggested that PilZ domains bind c-di-GMP and allosterically modulate effector pathways. We have determined a 1.9 A crystal structure of c-di-GMP bound to VCA0042/PlzD, a PilZ domain-containing protein from Vibrio cholerae. Either this protein or another specific PilZ domain-containing protein is required for V. cholerae to efficiently infect mice. VCA0042/PlzD comprises a C-terminal PilZ domain plus an N-terminal domain with a similar beta-barrel fold. C-di-GMP contacts seven of the nine strongly conserved residues in the PilZ domain, including three in a seven-residue long N-terminal loop that undergoes a conformational switch as it wraps around c-di-GMP. This switch brings the PilZ domain into close apposition with the N-terminal domain, forming a new allosteric interaction surface that spans these domains and the c-di-GMP at their interface. The very small size of the N-terminal conformational switch is likely to explain the facile evolutionary diversification of the PilZ domain.  相似文献   

2.
    
Proteins inherently fluctuate between conformations to perform functions in the cell. For example, they sample product‐binding, transition‐state‐stabilizing and product‐release states during catalysis, and they integrate signals from remote regions of the structure for allosteric regulation. However, there is a lack of understanding of how these dynamic processes occur at the basic atomic level. This gap can be at least partially addressed by combining variable‐temperature (instead of traditional cryogenic temperature) X‐ray crystallography with algorithms for modeling alternative conformations based on electron‐density maps, in an approach called multitemperature multiconformer X‐ray crystallography (MMX). Here, the use of MMX to reveal alternative conformations at different sites in a protein structure and to estimate the degree of energetic coupling between them is discussed. These insights can suggest testable hypotheses about allosteric mechanisms. Temperature is an easily manipulated experimental parameter, so the MMX approach is widely applicable to any protein that yields well diffracting crystals. Moreover, the general principles of MMX are extensible to other perturbations such as pH, pressure, ligand concentration etc. Future work will explore strategies for leveraging X‐ray data across such perturbation series to more quantitatively measure how different parts of a protein structure are coupled to each other, and the consequences thereof for allostery and other aspects of protein function.  相似文献   

3.
  总被引:1,自引:0,他引:1  
  相似文献   

4.
  总被引:2,自引:1,他引:2  
Protein tyrosine phosphatases (PTPases) play critical roles in the intracellular signal transduction pathways that regulate cell transformation, growth, and proliferation. The structures of several different PTPases have revealed a conserved active site architecture in which a phosphate-binding loop, together with an invariant arginine, cradle the phosphate of a phosphotyrosine substrate and poise it for nucleophilic attack by an invariant cysteine nucleophile. We previously reported that binding of tungstate to the Yop51 PTPase from Yersinia induced a loop conformational change that moved aspartic acid 356 into the active site, where it can function as a general acid. This is consistent with the aspartic acid donating a proton to the tyrosyl leaving group during the initial hydrolysis step. In this report, using a similar structure of the inactive Cys 403-->Ser mutant of the Yersinia PTPase complexed with sulfate, we detail the structural and functional details of this conformational change. In response to oxyanion binding, small perturbations occur in active site residues, especially Arg 409, and trigger the loop to close. Interestingly, the peptide bond following Asp 356 has flipped to ligate a buried, active site water molecule that also hydrogen bonds to the bound sulfate anion and two invariant glutamines. Loop closure also significantly decreases the solvent accessibility of the bound oxyanion and could effectively shield catalytic intermediates from phosphate acceptors other than water. We speculate that the intrinsic loop flexibility of different PTPases may be related to their catalytic rate and may play a role in the wide range of activities observed within this enzyme family.  相似文献   

5.
    
Enzymes involved in Staphylococcus aureus amino acid metabolism have recently gained traction as promising targets for the development of new antibiotics, however, not all aspects of this process are understood. The ATP-grasp superfamily includes enzymes that predominantly catalyze the ATP-dependent ligation of various carboxylate and amine substrates. One subset, ʟ-amino acid ligases (LALs), primarily catalyze the formation of dipeptide products in Gram-positive bacteria, however, their involvement in S. aureus amino acid metabolism has not been investigated. Here, we present the characterization of the putative ATP-grasp enzyme (SAOUHSC_02373) from S. aureus NCTC 8325 and its identification as a novel LAL. First, we interrogated the activity of SAOUHSC_02373 against a panel of ʟ-amino acid substrates. As a result, we identified SAOUHSC_02373 as an LAL with high selectivity for ʟ-aspartate and ʟ-methionine substrates, specifically forming an ʟ-aspartyl–ʟ-methionine dipeptide. Thus, we propose that SAOUHSC_02373 be assigned as ʟ-aspartate–ʟ-methionine ligase (LdmS). To further understand this unique activity, we investigated the mechanism of LdmS by X-ray crystallography, molecular modeling, and site-directed mutagenesis. Our results suggest that LdmS shares a similar mechanism to other ATP-grasp enzymes but possesses a distinctive active site architecture that confers selectivity for the ʟ-Asp and ʟ-Met substrates. Phylogenetic analysis revealed LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Subsequent genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with control of Met and Cys metabolism. Together, these findings support a role for LdmS in Staphylococcal sulfur amino acid metabolism.  相似文献   

6.
The crystal structure of the binary complex of trimeric purine nucleoside phosphorylase (PNP) from calf spleen with the acyclic nucleoside phosphonate inhibitor 2,6-diamino-(S)-9-[2-(phosphonomethoxy)propyl]purine ((S)-PMPDAP) is determined at 2.3A resolution in space group P2(1)2(1)2(1). Crystallization in this space group, which is observed for the first time with a calf spleen PNP crystal structure, is obtained in the presence of calcium atoms. In contrast to the previously described cubic space group P2(1)3, two independent trimers are observed in the asymmetric unit, hence possible differences between monomers forming the biologically active trimer could be detected, if present. Such differences would be expected due to third-of-the-sites binding documented for transition-state events and inhibitors. However, no differences are noted, and binding stoichiometry of three inhibitor molecules per enzyme trimer is observed in the crystal structure, and in the parallel solution studies using isothermal titration calorimetry and spectrofluorimetric titrations. Presence of phosphate was shown to modify binding stoichiometry of hypoxanthine. Therefore, the enzyme was also crystallized in space group P2(1)2(1)2(1) in the presence of (S)-PMPDAP and phosphate, and the resulting structure of the binary PNP/(S)-PMPDAP complex was refined at 2.05A resolution. No qualitative differences between complexes obtained with and without the presence of phosphate were detected, except for the hydrogen bond contact of Arg84 and a phosphonate group, which is observed only in the former complex in three out of six independent monomers. Possible hydrogen bonds observed in the enzyme complexed with (S)-PMPDAP, in particular a putative hydrogen bonding contact N(1)-H cdots, three dots, centered Glu201, indicate that the inhibitor binds in a tautomeric or ionic form in which position N(1) acts as a hydrogen bond donor. This points to a crucial role of this hydrogen bond in defining specificity of trimeric PNPs and is in line with the proposed mechanism of catalysis in which this contact helps to stabilize the negative charge that accumulates on O(6) of the purine base in the transition state. In the present crystal structure the loop between Thr60 and Ala65 was found in a different conformation than that observed in crystal structures of trimeric PNPs up to now. Due to this change a new wide entrance is opened into the active site pocket, which is otherwise buried in the interior of the protein. Hence, our present crystal structure provides no obvious indication for obligatory binding of one of the substrates before binding of a second one; it is rather consistent with random binding of substrates. All these results provide new data for clarifying the mechanism of catalysis and give reasons for the non-Michaelis kinetics of trimeric PNPs.  相似文献   

7.
Calmodulin (CaM) is a multifunctional calcium-binding protein, which regulates various biochemical processes. CaM acts via structural changes and complex forming with its target enzymes. CaM has two globular domains (N-lobe and C-lobe) connected by a long linker region. Upon calcium binding, the N-lobe and C-lobe undergo local conformational changes, after that, entire CaM wraps the target enzyme through a large conformational change. However, the regulation mechanism, such as allosteric interactions regulating the conformational changes, is still unclear. In order to clarify the allosteric interactions, in this study, experimentally obtained ‘real’ structures are compared to ‘model’ structures lacking the allosteric interactions. As the allosteric interactions would be absent in calcium-free CaM (apo-CaM), allostery-eliminated calcium-bound CaM (holo-CaM) models were constructed by combining the apo-CaM’s linker and the holo-CaM’s N- and C-lobe. Before the comparison, the ‘real’ and ‘model’ structures were clustered and cluster–cluster relationship was determined by a principal component analysis. The structures were compared based on the relationship, then, a distance map and a contact probability analysis clarified that the inter-domain motion is regulated by several groups of inter-domain contacting residue pairs. The analyses suggested that these residues cause inter-domain translation and rotation, and as a consequence, the motion encourage structural diversity. The resultant diversity would contribute to the functional versatility of CaM.  相似文献   

8.
9.
    
Adenosine triphosphate phosphoribosyltransferase (ATP‐PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP‐PRT from the pathogenic ε‐proteobacteria Campylobacter jejuni (CjeATP‐PRT). This enzyme is a member of the long form (HisGL) ATP‐PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP‐PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP‐PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP‐PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme.  相似文献   

10.
    
Over the past forty years there has been a drastic increase in fructose-related diseases, including obesity, heart disease and diabetes. Ketohexokinase (KHK), the first enzyme in the liver fructolysis pathway, catalyzes the ATP-dependent phosphorylation of fructose to fructose 1-phosphate. Understanding the role of KHK in disease-related processes is crucial for the management and prevention of this growing epidemic. Molecular insight into the structure–function relationship in ligand binding and catalysis by KHK is needed for the design of therapeutic inhibitory ligands. Ketohexokinase has two isoforms: ketohexokinase A (KHK-A) is produced ubiquitously at low levels, whereas ketohexokinase C (KHK-C) is found at much higher levels, specifically in the liver, kidneys and intestines. Structures of the unliganded and liganded human isoforms KHK-A and KHK-C are known, as well as structures of unliganded and inhibitor-bound mouse KHK-C (mKHK-C), which shares 90% sequence identity with human KHK-C. Here, a high-resolution X-ray crystal structure of mKHK-C refined to 1.79 Å resolution is presented. The structure was determined in a complex with both the substrate fructose and the product of catalysis, ADP, providing a view of the Michaelis-like complex of the mouse ortholog. Comparison to unliganded structures suggests that KHK undergoes a conformational change upon binding of substrates that places the enzyme in a catalytically competent form in which the β-sheet domain from one subunit rotates by 16.2°, acting as a lid for the opposing active site. Similar kinetic parameters were calculated for the mouse and human enzymes and indicate that mice may be a suitable animal model for the study of fructose-related diseases. Knowledge of the similarity between the mouse and human enzymes is important for understanding preclinical efforts towards targeting this enzyme, and this ground-state, Michaelis-like complex suggests that a conformational change plays a role in the catalytic function of KHK-C.  相似文献   

11.
T-lymphocytes recognize a wide variety of antigens through highly diverse cell-surface glycoproteins known as T-cell receptors (TCRs). These disulfide-linked heterodimers are composed of alpha and beta or gamma and delta polypeptide chains consisting of variable (V) and constant (C) domains non-covalently associated with at least four invariant chains to form the TCR-CD3 complex. It is well established that alpha beta TCRs recognize antigen in the form of peptides bound to molecules of the major histocompatibility complex (MHC); furthermore, information on the three-dimensional structure of alpha beta TCRs has recently become available through X-ray crystallography. In contrast, the antigen specificity of gamma delta TCRs is much less well understood and their three-dimensional structure is unknown. We have cloned the delta chain of a human TCR specific for the MHC class I HLA-A2 molecule and expressed the V domain as a secreted protein in the periplasmic space of Escherichia coli. Following affinity purification using a nickel chelate adsorbent, the recombinant V delta domain was crystallized in a form suitable for X-ray diffraction analysis. The crystals are orthorhombic, space group P2(1)2(1)2 with unit cell dimensions a = 69.9, b = 49.0, c = 61.6 A. and diffract to beyond 2.3 A resolution. The ability of a V delta domain produced in bacteria to form well-ordered crystals strongly suggests that the periplasmic space can provide a suitable environment for the correct in vivo folding of gamma delta TCRs.  相似文献   

12.
Hsp70 chaperones are two-domain proteins that assist in intra-cellular protein (re) folding processes in all species. The protein folding activity of the substrate binding domain of the Hsp70s is regulated by nucleotide binding at the nucleotide-binding domain through an as yet undefined heterotropic allosteric mechanism. The available structures of the isolated domains of Hsp70s have given very limited indications of nucleotide-induced conformational changes that could modulate the affinity for substrate proteins. Here, we present a multi-dimensional NMR study of a prokaryotic Hsp70 homolog, Thermus thermophilus DnaK, using a 54kDa construct containing both nucleotide binding domain and most of the substrate binding domain. It is determined that the nucleotide binding domain and substrate binding domain are closely associated in all ligand states studied. Comparison of the assigned NMR spectra of the two-domain construct with those of the previously studied isolated nucleotide binding domain, allowed the identification of the nucleotide binding domain-substrate binding domain interface. A global three-dimensional structure was obtained for the two-domain construct on the basis of this information and of NMR residual dipolar couplings measurements. This is the first experimental elucidation of the relative positioning of the nucleotide binding domain and substrate binding domain for any Hsp70 chaperone. Comparisons of NMR data between various ligand states including nucleotide-free, ATP, ADP.Pi and ADP.Pi+ peptide bound, identified residues involved in the allosteric inter-domain communication. In particular, peptide binding to the substrate binding domain was found to cause conformational changes in the NBD extending to the nucleotide binding pocket. Detailed analysis suggests that the inter-domain interface becomes tighter in the (nucleotide binding domain ligation/substrate binding domain ligation) order ATP/apo, ADP.Pi/apo ADP.Pi/peptide.  相似文献   

13.
    
Because Tyr35beta is located at the convergence of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces in deoxyhemoglobin, it can be argued that mutations at this position may result in large changes in the functional properties of hemoglobin. However, only small mutation-induced changes in functional and structural properties are found for the recombinant hemoglobins betaY35F and betaY35A. Oxygen equilibrium-binding studies in solution, which measure the overall oxygen affinity (the p50) and the overall cooperativity (the Hill coefficient) of a hemoglobin solution, show that removing the phenolic hydroxyl group of Tyr35beta results in small decreases in oxygen affinity and cooperativity. In contrast, removing the entire phenolic ring results in a fourfold increase in oxygen affinity and no significant change in cooperativity. The kinetics of carbon monoxide (CO) combination in solution and the oxygen-binding properties of these variants in deoxy crystals, which measure the oxygen affinity and cooperativity of just the T quaternary structure, show that the ligand affinity of the T quaternary structure decreases in betaY35F and increases in betaY35A. The kinetics of CO rebinding following flash photolysis, which provides a measure of the dissociation of the liganded hemoglobin tetramer, indicates that the stability of the liganded hemoglobin tetramer is not altered in betaY35F or betaY35A. X-ray crystal structures of deoxy betaY35F and betaY35A are highly isomorphous with the structure of wild-type deoxyhemoglobin. The betaY35F mutation repositions the carboxyl group of Asp126alpha1 so that it may form a more favorable interaction with the guanidinium group of Arg141alpha2. The betaY35A mutation results in increased mobility of the Arg141alpha side chain, implying that the interactions between Asp126alpha1 and Arg141alpha2 are weakened. Therefore, the changes in the functional properties of these 35beta mutants appear to correlate with subtle structural differences at the C terminus of the alpha-subunit.  相似文献   

14.
    
The serine protease subtilisin BPN' is a useful catalyst for peptide synthesis when dissolved in high concentrations of a water-miscible organic co-solvent such as N,N-dimethylformamide (DMF). However, in 50% DMF, the k(cat) for amide hydrolysis is two orders of magnitude lower than in aqueous solution. Surprisingly, the k(cat) for ester hydrolysis is unchanged in 50% DMF. To explain this alteration in activity, the structure of subtilisin 8397+1 was determined in 20, 35, and 50% (v/v) DMF to 1.8 A resolution. In 50% DMF, the imidazole ring of His64, the central residue of the catalytic triad, has rotated approximately 180 degrees around the Cbeta-Cgamma bond. Two new water molecules in the active site stabilize the rotated conformation. This rotation places His64 in an unfavorable geometry to interact with the other members of the catalytic triad, Ser221 and Asp32. NMR experiments confirm that the characteristic resonance due to the low barrier hydrogen bond between the His64 and Asp32 is absent in 50% DMF. These experiments provide a clear structural basis for the change in activity of serine proteases in organic co-solvents.  相似文献   

15.
Three subfamilies of metallopeptidase family M16 enzymes—M16A, M16B, and M16C—are widely distributed among eukaryotes and prokaryotes. SPH2681, a periplasmic M16B protein found in Sphingomonas sp. strain A1, contains an HXXEH motif essential for Zn2+ binding and catalytic activity. SPH2682 is another member of M16B, which lacks the metal-binding motif but conserves an active-site R/Y pair commonly found in the C-terminal half of M16 enzymes. Two genes coding for SPH2681 and SPH2682 assemble into a single operon in the bacterial genome. This study determined SPH2681 to be constitutively expressed in strain A1 cells grown on different carbon sources, suggesting a more general cellular function. SPH2681 and SPH2681/SPH2682 were overexpressed in Escherichia coli, purified, and characterized. SPH2681 was found to associate with SPH2682, forming a heterosubunit enzyme with peptidase activity, while SPH2681 alone exhibited no enzymatic activity. X-ray crystallography of the SPH2681/SPH2682 complex revealed two conformations (open and closed heterodimeric forms) within the same crystal. Compared with the closed form, the open form contains two subunits rotated away from each other by approximately 8°, increasing the distance between the zinc ion and active-site residues by up to 8 Å. In addition, many hydrogen bonds are formed or broken on change between the conformations of the heterodimers, suggesting that subunit dynamics is a prerequisite for catalysis. To our knowledge, this is the first report on both conformational forms of the same M16 peptidase, providing a unique insight into the general proteolytic mechanism of M16 proteases.  相似文献   

16.
Previously, an RNA stem-loop (TR) encompassing 19 nt of the genome of bacteriophage MS2 was shown to act as an allosteric effector of conformational switching in the coat protein during in vitro capsid assembly. TR RNA binding to symmetric coat protein dimers results in conformational changes, principally at the FG-loop connecting the F and G β-strands in each subunit, yielding an asymmetric structure. The FG-loops define the quasi-equivalent conformers of the coat protein subunit (A, B, and C) in the T = 3 capsid. Efficient assembly of this capsid in vitro requires that both symmetrical and asymmetrical forms of the coat protein dimer be present in solution, implying that they closely resemble the quasi-equivalent dimers (A/B and C/C) seen in the final capsid. Experiments show that assembly can be triggered by a number of RNA stem-loops unrelated to TR in sequence and detailed secondary structure, suggesting that there is little sequence specificity to the allosteric effect. Since the stem-loop binding site on the coat protein dimer is distal to the FG-loops the mechanism of this switching effect needs to be investigated. We have analyzed the vibrational modes of both TR-bound and RNA-free coat protein dimers using an all-atom normal-mode analysis. The results suggest that asymmetric contacts between the A-duplex RNA phosphodiester backbone and the EF-loop in one coat protein subunit result in the FG-loop of that subunit becoming more dynamic, whilst the equivalent loop on the other monomer decreases its mobility. The increased dynamic behaviour occurs in the FG-loop of the subunit required to undergo the largest conformational change when adopting the quasi-equivalent B conformation. The free energy barrier on the pathway to form this new structure would consequently be reduced compared to the unbound subunit. Our results also imply that the allosteric effect should be independent of the base sequence of the bound stem-loop, as observed experimentally. As a test of this model, we also examined the vibrational modes of a known assembly mutant, W82R, which cannot assemble beyond dimer. This mutation leads to an increased mobility of the DE-loop rather than the FG-loop after TR binding, consistent with the non-assembling phenotype of this mutant protein.  相似文献   

17.
Enzyme function often involves a conformational change. There is a general agreement that loops play a vital role in correctly positioning the catalytically important residues. Nevertheless, predicting the functional loops and most importantly their role in enzyme function remains a difficult task. A major reason for this difficulty is that loops that undergo conformational change are frequently not well conserved in their primary sequence. beta1,4-Galactosyltransferase is one such enzyme. There, the amino acid sequence of a long loop that undergoes a large conformational change upon substrate binding is not well conserved. Our molecular dynamics simulations show that the large conformational change in the long loop is brought about by a second, interacting loop. Interestingly, while the structural change of the second loop is much smaller than that of the long loop, its sequence (particularly glycine residues) is highly conserved. We further examine the generality of the proposition that there are loops that trigger movements but nevertheless show little or no structural changes in crystals. We focus on two other enzymes, enolase and lipase. We chose these enzymes, since they too undergo conformational change upon ligand binding, however, they have different folds and different functions. Through multiple sets of simulations we show that the conformational change of the functional loop(s) is brought about through communication of flexibility by triggering loops that have several glycine residues. We further propose that similar to the conservation of common favorable fold types and structural motifs, evolution has also conserved common "skillful" mechanisms. Mechanisms may be conserved across different folds, sequences and functions, with adaptation to specific enzymatic roles.  相似文献   

18.
The structure of trypanosomal triosephosphate isomerase (TIM)has been solved at a resolution of 2.1Å in a new crystal form grown at pH 8.8 from PEG6000. In this new crystal form (space group C2, cell dimensions 94.8 Å, 48.3 Å, 131.0 Å, 90.0°, 100.3°, 90.0°), TIM is present in a ligand-free state. The asymmetric unit consists of two TIM subunits. Each of these subunits is part of a dimer which is sitting on a crystallographic twofold axis, such that the crystal packing is formed from two TIM dimers in two distinct environments. The two constituent monomers of a given dimer are, therefore, crystallographically equivalent. In the ligand-free state of TIM in this crystal form, the two types of dimer are very similar in structure, with the flexible loops in the “Open” conformation. For one dimer (termed molecule-1), the flexible loop (loop-6) is involved in crystal contacts. Crystals of this type have been used in soaking experiments with 0.4 M ammonium sulphate (studied at 2.4 Å resolution), and with 40 μM phosphoglycolohydroxamate (studied at 2.5 Å resolution). It is found that transfer to 0.4 M ammonuum sulphate (equal to 80 times the Ki of sulphate for TIM), gives rise to significant sulphate binding at the active site of one dimer (termed molecule-2), and less significant binding at the active site of the other. In neither dimer does sulphate induce a “closed” conformation. In a mother liquor containing 40 μM phosphoglycolohydroxamate (equal to 10 times the Ki of phosphoglycolohydroxamate for TIM), an inhibitor molecule binds at the active site of only that dimer of which the flexible loop is free from crystal contacts (molecule-2). In this dimer, it induces a closed conformation. These three structures are compared and discussed with respect to the mode of binding of ligand in the active site as well as with respect to the conformational changes resulting from ligand binding. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Matrix metalloproteinases belong to the superfamily of metzincins containing, besides a similar topology and a strictly conserved zinc environment, a 1,4-tight turn with a strictly conserved methionine residue at position three (the so called Met-turn [Bode et al. (1993) FEBS331, 134–140; Stöcker et al. (1995) Protein Sci.4, 823–840]. The distal S–CH3 moiety of this methionine residue forms the hydrophobic basement of the three His residues liganding the catalytic zinc ion. To assess the importance of this methionine, we have expressed the catalytic domain of neutrophil collagenase (rHNC, residues Met80–Gly242) in the methionine auxotrophic Escherichia coli strain B834[DE3](hsd metB), with the two methionine residues replaced by Selenomethionine. Complete replacement was confirmed by amino acid analysis and electrospray mass spectrometry. The folded and purified enzyme retained its catalytic activity, but showed modifications which are reflected in changed kinetic parameters. The Met215SeMet substitution caused a decrease in conformational stability upon urea denaturation. The X-ray crystal structure of this Selenomethionine rHNC was virtually identical to that of the wild-type catalytic domain except for a very faint local disturbance around the sulfur-seleno substitution site.  相似文献   

20.
The ABC-ATPase GlcV energizes a binding protein-dependent ABC transporter that mediates glucose uptake in Sulfolobus solfataricus. Here, we report high-resolution crystal structures of GlcV in different states along its catalytic cycle: distinct monomeric nucleotide-free states and monomeric complexes with ADP-Mg(2+) as a product-bound state, and with AMPPNP-Mg(2+) as an ATP-like bound state. The structure of GlcV consists of a typical ABC-ATPase domain, comprising two subdomains, connected by a linker region to a C-terminal domain of unknown function. Comparisons of the nucleotide-free and nucleotide-bound structures of GlcV reveal re-orientations of the ABCalpha subdomain and the C-terminal domain relative to the ABCalpha/beta subdomain, and switch-like rearrangements in the P-loop and Q-loop regions. Additionally, large conformational differences are observed between the GlcV structures and those of other ABC-ATPases, further emphasizing the inherent flexibility of these proteins. Notably, a comparison of the monomeric AMPPNP-Mg(2+)-bound GlcV structure with that of the dimeric ATP-Na(+)-bound LolD-E171Q mutant reveals a +/-20 degrees rigid body re-orientation of the ABCalpha subdomain relative to the ABCalpha/beta subdomain, accompanied by a local conformational difference in the Q-loop. We propose that these differences represent conformational changes that may have a role in the mechanism of energy-transduction and/or allosteric control of the ABC-ATPase activity in bacterial importers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号