首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microcompartments are loose protein cages that encapsulate enzymes for particular bacterial metabolic pathways. These structures are thought to retain and perhaps concentrate pools of small, uncharged intermediates that would otherwise diffuse from the cell. In Salmonella enterica, a microcompartment encloses enzymes for ethanolamine catabolism. The cage has been thought to retain the volatile intermediate acetaldehyde but allow diffusion of the much larger cofactors NAD and coenzyme A (CoA). Genetic tests support an alternative idea that the microcompartment contains and recycles private pools of the large cofactors NAD and CoA. Two central enzymes convert ethanolamine to acetaldehyde (EutBC) and then to acetyl-CoA (EutE). Two seemingly peripheral redundant enzymes encoded by the eut operon proved to be essential for ethanolamine utilization, when subjected to sufficiently stringent tests. These are EutD (acetyl-CoA to acetyl phosphate) and EutG (acetaldehyde to ethanol). Obligatory recycling of cofactors couples the three reactions and drives acetaldehyde consumption. Loss and toxic effects of acetaldehyde are minimized by accelerating its consumption. In a eutD mutant, acetyl-CoA cannot escape the compartment but is released by mutations that disrupt the structure. The model predicts that EutBC (ethanolamine-ammonia lyase) lies outside the compartment, using external coenzyme B12 and injecting its product, acetaldehyde, into the lumen, where it is degraded by the EutE, EutD, and EutG enzymes using private pools of CoA and NAD. The compartment appears to allow free diffusion of the intermediates ethanol and acetyl-PO4 but (to our great surprise) restricts diffusion of acetaldehyde.  相似文献   

2.
Many bacteria conditionally express proteinaceous organelles referred to here as microcompartments (Fig. 1). These microcompartments are thought to be involved in a least seven different metabolic processes and the number is growing. Microcompartments are very large and structurally sophisticated. They are usually about 100-150 nm in cross section and consist of 10,000-20,000 polypeptides of 10-20 types. Their unifying feature is a solid shell constructed from proteins having bacterial microcompartment (BMC) domains. In the examples that have been studied, the microcompartment shell encases sequentially acting metabolic enzymes that catalyze a reaction sequence having a toxic or volatile intermediate product. It is thought that the shell of the microcompartment confines such intermediates, thereby enhancing metabolic efficiency and/or protecting cytoplasmic components. Mechanistically, however, this creates a paradox. How do microcompartments allow enzyme substrates, products and cofactors to pass while confining metabolic intermediates in the absence of a selectively permeable membrane? We suggest that the answer to this paradox may have broad implications with respect to our understanding of the fundamental properties of biological protein sheets including microcompartment shells, S-layers and viral capsids.  相似文献   

3.
Compartmentalized co-localization of enzymes and their substrates represents an attractive approach for multi-enzymatic synthesis in engineered cells and biocatalysis. Sequestration of enzymes and substrates would greatly increase reaction efficiency while also protecting engineered host cells from potentially toxic reaction intermediates. Several bacteria form protein-based polyhedral microcompartments which sequester functionally related enzymes and regulate their access to substrates and other small metabolites. Such bacterial microcompartments may be engineered into protein-based nano-bioreactors, provided that they can be assembled in a non-native host cell, and that heterologous enzymes and substrates can be targeted into the engineered compartments. Here, we report that recombinant expression of Salmonella enterica ethanolamine utilization (eut) bacterial microcompartment shell proteins in E. coli results in the formation of polyhedral protein shells. Purified recombinant shells are morphologically similar to the native Eut microcompartments purified from S. enterica. Surprisingly, recombinant expression of only one of the shell proteins (EutS) is sufficient and necessary for creating properly delimited compartments. Co-expression with EutS also facilitates the encapsulation of EGFP fused with a putative Eut shell-targeting signal sequence. We also demonstrate the functional localization of a heterologous enzyme (β-galactosidase) targeted to the recombinant shells. Together our results provide proof-of-concept for the engineering of protein nano-compartments for biosynthesis and biocatalysis.  相似文献   

4.
The ethanolamine-utilizing bacterial microcompartment (Eut-BMC) of Escherichia coli is a polyhedral organelle that harbors specific enzymes for the catabolic degradation of ethanolamine. The compartment is composed of a proteinaceous shell structure that maintains a highly specialized environment for the biochemical reactions inside. Recent structural investigations have revealed hexagonal assemblies of shell proteins that form a tightly packed two-dimensional lattice that is likely to function as a selectively permeable protein membrane, wherein small channels are thought to permit controlled exchange of specific solutes. Here, we show with two nonisomorphous crystal structures that EutM also forms a two-dimensional protein membrane. As its architecture is highly similar to the membrane structure of EutL, it is likely that the structure represents a physiologically relevant form. Thus far, of all Eut proteins, only EutM and EutL have been shown to form such proteinaceous membranes. Despite their similar architectures, however, both proteins exhibit dramatically different pore structures. In contrast to EutL, the pore of EutM appears to be positively charged, indicating specificity for different solutes. Furthermore, we also show that the central pore structure of the EutL shell protein can be triggered to open specifically upon exposure to zinc ions, suggesting a specific gating mechanism.Bacterial microcompartments are subcellular organelles that are found in many prokaryotic organisms (10, 32). In contrast to the lipidic vesicles of many eukaryotic cells, these enclosures are entirely composed of proteins. Recent imaging by electron microscopy revealed capsid-like particles obeying 2-, 3- and 5-fold symmetries that suggest icosahedral symmetry (4, 13, 27). Shell proteins are thought to form a tightly sealed membrane structure that separates the lumen from the cytosol. Similar to the lipidic membranes of vesicles, these proteinaceous membranes have been suggested to provide a selectively permeable solute barrier, wherein specific pores maintain an optimal biochemical environment for the catabolic reactions inside (25).The ethanolamine-utilizing bacterial microcompartment (Eut-BMC) enables some bacteria to survive on ethanolamine as the sole source for carbon, nitrogen, and energy (25). It is encoded by a 17-gene-containing operon, and homologues of its genes have been identified in Escherichia coli, Salmonella enterica serovar Typhimurium, Mycobacterium tuberculosis, and Clostridium kluyveri among other prokaryotic pathogens (22). Largely based on sequence comparisons, the compartment''s outer shell was proposed to be composed of five different shell proteins: Eut-K, -L, -M, -N, and -S, all of which are fairly small proteins that typically consist of about 100 amino acids. Only EutL is about twice the size, with 216 amino acids as a result of two tandemly duplicated shell protein domains (26).To date, little is known about the composition, architecture, and function of bacterial microcompartments. Recent structural investigations of BMC particles and individual shell proteins, however, have contributed greatly to a basic understanding of BMC architecture. Electron microscopy, for example, has revealed polyhedral shell structures that are composed of a thin layer of proteins. Intriguingly, crystallizations revealed that some shell proteins also assemble into tightly packed two-dimensional arrays that may resemble the facets of the compartments (28). Within an array, these proteins typically assembled into hexamers or trimers (in the case of tandem domain proteins) that exhibited a distinct hexagonal shape. As this geometry was suggested to be of fundamental importance to the microcompartment architecture, we will here refer to it as a “tile” or “tile structure.” While it has not yet been proven directly that the assembly of proteins in the crystals is identical to that of the BMC, their almost seamless two-dimensional packing has been suggested to be of physiological relevance as it could provide an efficient barrier to prevent leakage of toxic by-products into the cytoplasm (4, 25). Overall, however, it is not understood how the various shell proteins assemble to form the polyhedral structure while maintaining an efficiently tight seal. In particular, the interactions among the shell proteins and their arrangements within facets, edges, and vertices have remained elusive.In the study presented here, we demonstrate for the first time that the shell protein EutM is also able to form tightly packed two-dimensional arrays. With two independently determined crystal structures, we show that its protein array closely resembled that of EutL and other carboxysomal proteins. As a result, we hypothesize that this assembly represents a physiologically relevant form. Both crystal forms also revealed the C-terminal tail of the protein, which is proposed to serve as a potential interaction site with other factors.Furthermore, we show that the pore structure of EutL can be triggered to open upon exposure to specific solutes. A first structure of EutL was previously determined in our laboratory, and it revealed three water-filled pores per tile (26). Interestingly, its structure consisted of two tandemly repeated shell protein domains, which assembled into an almost perfectly shaped hexagonal structure. This architectural feature was recently also found in shell proteins of other microcompartments (11, 20). Each of the pores of an EutL tile was coated with acidic residues, which indicated a possible pathway for positively charged molecules such as ethanolamine. Inspection of the structure also suggested specific metal binding sites on its surface. In order to verify this idea, we performed systematic soaking studies of the crystals with selected divalent metals. Surprisingly, we found that zinc ions bound to the protein specifically not at the suspected sites but at different sites that caused a dramatic opening of a central pore. This unprecedented observation of a specifically triggered pore opening is consistent with another previous observation (30) and may point to a mechanism for regulation of permeability.  相似文献   

5.
Bacterial microcompartments are a functionally diverse group of proteinaceous organelles that confine specific reaction pathways in the cell within a thin protein-based shell. The propanediol utilizing (Pdu) microcompartment contains the reactions for metabolizing 1,2-propanediol in certain enteric bacteria, including Salmonella. The Pdu shell is assembled from a few thousand protein subunits of several different types. Here we report the crystal structures of two key shell proteins, PduA and PduT. The crystal structures offer insights into the mechanisms of Pdu microcompartment assembly and molecular transport across the shell. PduA forms a symmetric homohexamer whose central pore appears tailored for facilitating transport of the 1,2-propanediol substrate. PduT is a novel, tandem domain shell protein that assembles as a pseudohexameric homotrimer. Its structure reveals an unexpected site for binding an [Fe-S] cluster at the center of the PduT pore. The location of a metal redox cofactor in the pore of a shell protein suggests a novel mechanism for either transferring redox equivalents across the shell or for regenerating luminal [Fe-S] clusters.  相似文献   

6.
Recently, progress has been made toward understanding the functional diversity of bacterial microcompartment (MCP) systems, which serve as protein-based metabolic organelles in diverse microbes. New types of MCPs have been identified, including the glycyl-radical propanediol (Grp) MCP. Within these elaborate protein complexes, BMC-domain shell proteins [bacterial microcompartment (in reference to the shell protein domain)] assemble to form a polyhedral barrier that encapsulates the enzymatic contents of the MCP. Interestingly, the Grp MCP contains a number of shell proteins with unusual sequence features. GrpU is one such shell protein whose amino acid sequence is particularly divergent from other members of the BMC-domain superfamily of proteins that effectively defines all MCPs. Expression, purification, and subsequent characterization of the protein showed, unexpectedly, that it binds an iron-sulfur cluster. We determined X-ray crystal structures of two GrpU orthologs, providing the first structural insight into the homohexameric BMC-domain shell proteins of the Grp system. The X-ray structures of GrpU, both obtained in the apo form, combined with spectroscopic analyses and computational modeling, show that the metal cluster resides in the central pore of the BMC shell protein at a position of broken 6-fold symmetry. The result is a structurally polymorphic iron-sulfur cluster binding site that appears to be unique among metalloproteins studied to date.  相似文献   

7.

SUMMARY

Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.  相似文献   

8.
The Pdu microcompartment is a proteinaceous, subcellular structure that serves as an organelle for the metabolism of 1,2-propanediol in Salmonella enterica. It encapsulates several related enzymes within a shell composed of a few thousand protein subunits. Recent structural studies on the carboxysome, a related microcompartment involved in CO(2) fixation, have concluded that the major shell proteins from that microcompartment form hexamers that pack into layers comprising the facets of the shell. Here we report the crystal structure of PduU, a protein from the Pdu microcompartment, representing the first structure of a shell protein from a noncarboxysome microcompartment. Though PduU is a hexamer like other characterized shell proteins, it has undergone a circular permutation leading to dramatic differences in the hexamer pore. In view of the hypothesis that microcompartment metabolites diffuse across the outer shell through these pores, the unique structure of PduU suggests the possibility of a special functional role.  相似文献   

9.
Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C. difficile eut operon displays regulatory genetic elements and protein encoding regions in common with homologous loci found in the genomes of other bacteria, including the enteric pathogens Salmonella enterica and Enterococcus faecalis. The crystal structures of two microcompartment shell proteins, CD1908 and CD1918, and an uncharacterised protein with potential enzymatic activity, CD1925, were determined by X-ray crystallography. CD1908 and CD1918 display the same protein fold, though the order of secondary structure elements is permuted in CD1908 and this protein displays an N-terminal β-strand extension. These proteins form hexamers with molecules related by crystallographic and non-crystallographic symmetry. The structure of CD1925 has a cupin β-barrel fold and a putative active site that is distinct from the metal-ion dependent catalytic cupins. Thin-section transmission electron microscopy of Escherichia coli over-expressing eut proteins indicates that CD1918 is capable of self-association into arrays, suggesting an organisational role for CD1918 in the formation of this microcompartment. The work presented provides the basis for further study of the architecture and function of the C. difficile eut microcompartment, its role in metabolism and the wider consequences of intestinal colonisation and virulence in this pathogen.  相似文献   

10.
PduS is a corrin reductase and is required for the reactivation of the cobalamin-dependent diol dehydratase. It is one component encoded within the large propanediol utilisation (pdu) operon, which is responsible for the catabolism of 1,2-propanediol within a self-assembled proteinaceous bacterial microcompartment. The enzyme is responsible for the reactivation of the cobalamin coenzyme required by the diol dehydratase. The gene for the cobalamin reductase from Citrobacter freundii (pduS) has been cloned to allow the protein to be overproduced recombinantly in E. coli with an N-terminal His-tag. Purified recombinant PduS is shown to be a flavoprotein with a non-covalently bound FMN that also contains two coupled [4Fe-4S] centres. It is an NADH-dependent flavin reductase that is able to mediate the one-electron reductions of cob(III)alamin to cob(II)alamin and cob(II)alamin to cob(I)alamin. The [4Fe-4S] centres are labile to oxygen and their presence affects the midpoint redox potential of flavin. Evidence is presented that PduS is able to bind cobalamin, which is inconsistent with the view that PduS is merely a flavin reductase. PduS is also shown to interact with one of the shell proteins of the metabolosome, PduT, which is also thought to contain an [Fe-S] cluster. PduS is shown to act as a corrin reductase and its interaction with a shell protein could allow for electron passage out of the bacterial microcompartment.  相似文献   

11.
The carboxysome is a bacterial organelle found in all cyanobacteria; it encapsulates CO2 fixation enzymes within a protein shell. The most abundant carboxysome shell protein contains a single bacterial microcompartment (BMC) domain. We present in vivo evidence that a hypothetical protein (dubbed CcmP) encoded in all β-cyanobacterial genomes is part of the carboxysome. We show that CcmP is a tandem BMC domain protein, the first to be structurally characterized from a β-carboxysome. CcmP forms a dimer of tightly stacked trimers, resulting in a nanocompartment-containing shell protein that may weakly bind 3-phosphoglycerate, the product of CO2 fixation. The trimers have a large central pore through which metabolites presumably pass into the carboxysome. Conserved residues surrounding the pore have alternate side-chain conformations suggesting that it can be open or closed. Furthermore, CcmP and its orthologs in α-cyanobacterial genomes form a distinct clade of shell proteins. Members of this subgroup are also found in numerous heterotrophic BMC-associated gene clusters encoding functionally diverse bacterial organelles, suggesting that the potential to form a nanocompartment within a microcompartment shell is widespread. Given that carboxysomes and architecturally related bacterial organelles are the subject of intense interest for applications in synthetic biology/metabolic engineering, our results describe a new type of building block with which to functionalize BMC shells.  相似文献   

12.
Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid‐based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best‐studied MCPs highlighting atomic‐level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.  相似文献   

13.
Bacterial microcompartments are organelles composed of a protein shell that surrounds functionally related proteins. Bioinformatic analysis of sequenced genomes indicates that homologs to shell protein genes are widespread among bacteria and suggests that the shell proteins are capable of encapsulating diverse enzymes. The carboxysome is a bacterial microcompartment that enhances CO(2) fixation in cyanobacteria and some chemoautotrophs by sequestering ribulose-1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase in the microcompartment shell. Here, we report the in vitro and in vivo characterization of CcmN, a protein of previously unknown function that is absolutely conserved in β-carboxysomal gene clusters. We show that CcmN localizes to the carboxysome and is essential for carboxysome biogenesis. CcmN has two functionally distinct regions separated by a poorly conserved linker. The N-terminal portion of the protein is important for interaction with CcmM and, by extension, ribulose-1,5-bisphosphate carboxylase/oxygenase and the carbonic anhydrase CcaA, whereas the C-terminal peptide is essential for interaction with the carboxysome shell. Deletion of the peptide abolishes carboxysome formation, indicating that its interaction with the shell is an essential step in microcompartment formation. Peptides with similar length and sequence properties to those in CcmN can be bioinformatically detected in a large number of diverse proteins proposed to be encapsulated in functionally distinct microcompartments, suggesting that this peptide and its interaction with its cognate shell proteins are common features of microcompartment assembly.  相似文献   

14.
Bacterial microcompartments (BMCs) are polyhedral organelles found in an increasingly wide variety of bacterial species. These structures, typified by carboxysomes of cyanobacteria and many chemoautotrophs, function to compartmentalize important reaction sequences of metabolic pathways. Unlike their eukaryotic counterparts, which are surrounded by lipid bilayer membranes, these microbial organelles are bounded by a thin protein shell that is assembled from multiple copies of a few different polypeptides. The main shell proteins form hexamers whose edges interact to create the thin sheets that form the facets of the polyhedral BMCs. Each hexamer contains a central pore hypothesized to mediate flux of metabolites into and out of the organelle. Because several distinctly different metabolic processes are found in the various BMCs studied to date, it has been proposed that a common advantage to packaging these pathways within shell-bound compartments is to optimize the concentration of volatile metabolites in the BMC by maintaining an interior pH that is lower than that of the cytoplasm. We have tested this idea by recombinantly fusing a pH-sensitive green fluorescent protein (GFP) to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the major enzyme component inside the carboxysome. Our results suggest that the carboxysomal pH is similar to that of its external environment and that the protein shell does not constitute a proton barrier. The explanation for the sundry BMC functions must therefore be sought in the characteristics of the pores that traverse their shells.Clearly, the subcellular organization of bacteria is much more complex than was once assumed (reviewed in references 17 and 26), and many bacteria are able to compartmentalize metabolic processes into distinct organelles. Among these, the bacterial microcompartments (BMCs) have garnered attention because the genetic potential to form these structures, which consist entirely of protein, is widespread among the bacteria (1). BMCs have been credited with enhancing the activity of the enzyme(s) they contain by providing a unique environment with optimized substrate concentrations or pH, facilitating metabolite channeling, or protecting the cell by sequestering toxic intermediates (1). Based on comparative genomic and biochemical analyses, the interiors of BMCs in various bacteria are populated by different complements of enzymes, suggesting that, collectively, these organelles play a role in a multitude of metabolic pathways. The bounding shells of all BMCs, on the other hand, appear to be built from multimeric assemblies of proteins that belong to the same two families (pfam 00936 and pfam 03319) (7, 11, 12, 29, 30, 32). Despite some structural differences between individual members of the two main shell protein types, the central pores in the pentamers and hexamers formed by these proteins have been implicated in mediating metabolite traffic across the BMC shell and, in some cases, may actively regulate transfer of substrates and products across the shell through a gating mechanism (12, 30). The variations in pore sizes and surface properties between individual BMC shell proteins likely reflect differences in interactions with the metabolites that pass through them and beg the question about functional differences among BMCs and between BMC protein shells and the lipid bilayer-based membranes of eukaryotic organelles.The carboxysome, the first BMC to be discovered (25), is found in all cyanobacteria and in many nonphotosynthetic chemoautotrophs, exemplified by the aerobic sulfur bacterium Halothiobacillus neapolitanus and its relatives. Its interior is filled with ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) (25), the enzyme that is crucial for carbon assimilation by these bacteria because it catalyzes the fixation of inorganic carbon onto the organic acceptor molecule, ribulose-1,5-bisphosphate. The enzyme is a relatively inefficient catalyst; it has a high Km for its substrate, CO2, a low turnover number, and is also able to fix O2 through a competing, unproductive reaction. The carboxysome compensates for these shortcomings by providing a microcompartment that enhances the catalytic efficiency of RubisCO. Cytosolic bicarbonate is thought to enter the carboxysome freely through the many pores in the shell, but it cannot be used by RubisCO. The action of the carboxysomal carbonic anhydrase that is cosequestered with RubisCO rapidly converts HCO3 to the RubisCO substrate, CO2 (5, 19, 28). The carboxysome shell retards diffusion of CO2 out of the organelle (5) and thereby contributes to the generation of an elevated steady-state concentration of CO2 in the vicinity of the RubisCO active site, a condition that favors the carboxylation reaction. In addition, the carboxysomal shell may reduce the concentration of the competing RubisCO substrate O2 by excluding it from the microcompartment interior (3, 14). Quantitative modeling of CO2 fixation in cyanobacteria supports the role of the shell as a barrier for CO2 diffusion out of the carboxysome (21). Measurements of CO2 hydration rates in purified intact and disrupted carboxysomes suggest that access of CO2 to the interior of the organelle is likewise limited by the shell (5).The shells of other BMCs have also been proposed to influence the flux of metabolites into and out of the microcompartment interior. The Pdu BMC of Salmonella enterica, which participates in the B12-dependent degradation of propanediol, prevents the toxic intermediate propionaldehyde from diffusing into the cytoplasm (6, 24). The Eut BMC, also found in S. enterica, is thought to encapsulate several enzymes of the ethanolamine utilization pathway, in which acetaldehyde is a central intermediate. The shell of the Eut BMC is also postulated to prevent loss of a crucial metabolite, in this case acetaldehyde, from the interior by diffusion (22). Acetaldehyde, which like propionaldehyde is volatile, is thought to be captured within the Eut BMC not to protect cellular structures from damage but to prevent escape of this important intermediate from the cell (20). In an effort to identify a common mechanism for BMC function, Penrod and Roth (20) made the intriguing suggestion that all BMCs may constitute compartments with an interior pH that is lower than that of the surrounding cytoplasm. Such an environment would promote the conversion of aldehydes in the Pdu and Eut BMCs to less volatile acetals, which are less likely to escape the downstream pathway enzymes localized in the BMC interior. In the carboxysomes of autotrophic bacteria, a lower pH would presumably favor higher concentrations of CO2 by shifting the equilibrium from HCO3 toward CO2.This unifying model of BMC function necessitates the assumption that the BMC shell resists passage of protons out of the compartment to maintain a pH gradient. Although it is not known whether a thin protein layer can impede proton diffusion, one needs only to look at the mechanism of proton discrimination described for the pores of aquaporins (2, 31) to imagine that the multiple pores in the BMC shell might likewise fulfill the structural requirements of a proton permeability barrier.An extended discussion of this model at a recent symposium on BMCs (at the 109th General Meeting of the American Society for Microbiology in 2009) prompted us to design a study that directly determined if the BMC shell is able to maintain a lumen pH that is different from that of its surrounding medium.  相似文献   

15.
Burendahl S  Nilsson L 《Proteins》2012,80(1):294-306
The liver X receptor, LXRα, is an important regulator of genes involved in metabolism and inflammation. The mechanism of communication between the cofactor peptide and the ligand in the ligand-binding pocket is a crucial and often discussed issue for the nuclear receptors (NRs), but such allosteric signaling pathways are difficult to detect and the transmission mechanism remains elusive. Here, we apply the anisotropic thermal diffusion method to the LXRα with bound coactivator and ligand. We detected a possible communication pathway between the coactivator peptide and the ligand. The signal is transmitted both through the receptor backbone and side chains. A key signaling residue is the first leucine in the cofactor peptide recognition motif LXXLL, which is conserved within the NR cofactors, suggesting a general mechanism for allosteric signaling. Furthermore, we studied the LXR receptor and cofactor molecular interactions in detail using molecular dynamics simulations. The protein-protein interaction patterns in the complexes of nine different cofactor peptides and holo-LXRα were characterized, revealing the importance of the receptor-cofactor charge clamp interaction. Specific, but infrequently occurring interactions were observed toward the cofactor peptide C-terminal residues. Thus, additional specificity between LXRα and its cofactors is likely to be found in molecular interactions outside the cofactor peptide or in other biological factors.  相似文献   

16.
Cyanobacteria have evolved a unique carbon fixation organelle known as the carboxysome that compartmentalizes the enzymes RuBisCO and carbonic anhydrase. This effectively increases the local CO2 concentration at the active site of RuBisCO and decreases its relatively unproductive side reaction with oxygen. Carboxysomes consist of a protein shell composed of hexameric and pentameric proteins arranged in icosahedral symmetry. Facets composed of hexameric proteins are connected at the vertices by pentameric proteins. Structurally homologous pentamers and hexamers are also found in heterotrophic bacteria where they form architecturally related microcompartments such as the Eut and Pdu organelles for the metabolism of ethanolamine and propanediol, respectively. Here we describe two new high-resolution structures of the pentameric shell protein CcmL from the cyanobacteria Thermosynechococcus elongatus and Gloeobacter violaceus and provide detailed analysis of their characteristics and comparison with related shell proteins.  相似文献   

17.
Carboxysomes are metabolic modules for CO(2) fixation that are found in all cyanobacteria and some chemoautotrophic bacteria. They comprise a semi-permeable proteinaceous shell that encapsulates ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. Structural studies are revealing the integral role of the shell protein paralogs to carboxysome form and function. The shell proteins are composed of two domain classes: those with the bacterial microcompartment (BMC; Pfam00936) domain, which oligomerize to form (pseudo)hexamers, and those with the CcmL/EutN (Pfam03319) domain which form pentamers in carboxysomes. These two shell protein types are proposed to be the basis for the carboxysome's icosahedral geometry. The shell proteins are also thought to allow the flux of metabolites across the shell through the presence of the small pore formed by their hexameric/pentameric symmetry axes. In this review, we describe bioinformatic and structural analyses that highlight the important primary, tertiary, and quaternary structural features of these conserved shell subunits. In the future, further understanding of these molecular building blocks may provide the basis for enhancing CO(2) fixation in other organisms or creating novel biological nanostructures.  相似文献   

18.
Nuclear pore complexes (NPCs) restrict uncontrolled nucleocytoplasmic fluxes of inert macromolecules but permit facilitated translocation of nuclear transport receptors and their cargo complexes. We probed the passive barrier of NPCs and observed sieve‐like properties with a dominating mesh or channel radius of 2.6 nm, which is narrower than proposed earlier. A small fraction of diffusion channels has a wider opening, explaining the very slow passage of larger molecules. The observed dominant passive diameter approximates the distance of adjacent hydrophobic clusters of FG repeats, supporting the model that the barrier is made of FG repeat domains cross‐linked with a spacing of an FG repeat unit length. Wheat germ agglutinin and the dominant‐negative importin β45‐462 fragment were previously regarded as selective inhibitors of facilitated NPC passage. We now observed that they do not distinguish between the passive and the facilitated mode. Instead, their inhibitory effect correlates with the size of the NPC‐passing molecule. They have little effect on small species, inhibit the passage of green fluorescent protein‐sized objects >10‐fold and virtually block the translocation of larger ones. This suggests that passive and facilitated NPC passage proceed through one and the same permeability barrier.  相似文献   

19.
Chaperonins are allosteric double-ring ATPases that mediate cellular protein folding. ATP binding and hydrolysis control opening and closing of the central chaperonin chamber, which transiently provides a protected environment for protein folding. During evolution, two strategies to close the chaperonin chamber have emerged. Archaeal and eukaryotic group II chaperonins contain a built-in lid, whereas bacterial chaperonins use a ring-shaped cofactor as a detachable lid. Here we show that the built-in lid is an allosteric regulator of group II chaperonins, which helps synchronize the subunits within one ring and, to our surprise, also influences inter-ring communication. The lid is dispensable for substrate binding and ATP hydrolysis, but is required for productive substrate folding. These regulatory functions of the lid may serve to allow the symmetrical chaperonins to function as 'two-stroke' motors and may also provide a timer for substrate encapsulation within the closed chamber.  相似文献   

20.
In mammalian cells, most membrane proteins are inserted cotranslationally into the ER membrane at sites termed translocons. Although each translocon forms an aqueous pore, the permeability barrier of the membrane is maintained during integration, even when the otherwise tight ribosome-translocon seal is opened to allow the cytoplasmic domain of a nascent protein to enter the cytosol. To identify the mechanism by which membrane integrity is preserved, nascent chain exposure to each side of the membrane was determined at different stages of integration by collisional quenching of a fluorescent probe in the nascent chain. Comparing integration intermediates prepared with intact, empty, or BiP-loaded microsomes revealed that the lumenal end of the translocon pore is closed by BiP in an ATP-dependent process before the opening of the cytoplasmic ribosome-translocon seal during integration. This BiP function is distinct from its previously identified role in closing ribosome-free, empty translocons because of the presence of the ribosome at the translocon and the nascent membrane protein that extends through the translocon pore and into the lumen during integration. Therefore, BiP is a key component in a sophisticated mechanism that selectively closes the lumenal end of some, but not all, translocons occupied by a nascent chain. By using collisional quenchers of different sizes, the large internal diameter of the ribosome-bound aqueous translocon pore was found to contract when BiP was required to seal the pore during integration. Therefore, closure of the pore involves substantial conformational changes in the translocon that are coupled to a complex sequence of structural rearrangements on both sides of the ER membrane involving the ribosome and BiP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号