首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATP-dependent caseinolytic protease (Clp) is an essential housekeeping enzyme in plant chloroplasts. It is by far the most complex of all known Clp proteases, with a proteolytic core consisting of multiple catalytic ClpP and noncatalytic ClpR subunits. It also includes a unique form of Clp protein of unknown function designated ClpT, two of which exist in the model species Arabidopsis thaliana. Inactivation of ClpT1 or ClpT2 significantly reduces the amount of Clp proteolytic core, whereas loss of both proves seedling lethal under autotrophic conditions. During assembly of the Clp proteolytic core, ClpT1 first binds to the P-ring (consisting of ClpP3-6 subunits) followed by ClpT2, and only then does the P-ring combine with the R-ring (ClpP1, ClpR1-4 subunits). Most of the ClpT proteins in chloroplasts exist in vivo as homodimers, which then apparently monomerize prior to association with the P-ring. Despite their relative abundance, however, the availability of both ClpT proteins is rate limiting for the core assembly, with the addition of recombinant ClpT1 and ClpT2 increasing core content up to fourfold. Overall, ClpT appears to regulate the assembly of the chloroplast Clp protease, revealing a new and sophisticated control mechanism on the activity of this vital protease in plants.  相似文献   

2.
3.
Whereas the plastid caseinolytic peptidase (Clp) P protease system is essential for plant development, substrates and substrate selection mechanisms are unknown. Bacterial ClpS is involved in N-degron substrate selection and delivery to the ClpAP protease. Through phylogenetic analysis, we show that all angiosperms contain ClpS1 and some species also contain ClpS1-like protein(s). In silico analysis suggests that ClpS1 is the functional homolog of bacterial ClpS. We show that Arabidopsis thaliana ClpS1 interacts with plastid ClpC1,2 chaperones. The Arabidopsis ClpS1 null mutant (clps1) lacks a visible phenotype, and no genetic interactions with ClpC/D chaperone or ClpPR core mutants were observed. However, clps1, but not clpc1-1, has increased sensitivity to the translational elongation inhibitor chloramphenicol suggesting a link between translational capacity and ClpS1. Moreover, ClpS1 was upregulated in clpc1-1, and quantitative proteomics of clps1, clpc1, and clps1 clpc1 showed specific molecular phenotypes attributed to loss of ClpC1 or ClpS1. In particular, clps1 showed alteration of the tetrapyrrole pathway. Affinity purification identified eight candidate ClpS1 substrates, including plastid DNA repair proteins and Glu tRNA reductase, which is a control point for tetrapyrrole synthesis. ClpS1 interaction with five substrates strictly depended on two conserved ClpS1 residues involved in N-degron recognition. ClpS1 function, substrates, and substrate recognition mechanisms are discussed.  相似文献   

4.
In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy.  相似文献   

5.
Chloroplast division is initiated by assembly of a mid-chloroplast FtsZ (Z) ring comprising two cytoskeletal proteins, FtsZ1 and FtsZ2. The division-site regulators ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3), MinD1, and MinE1 restrict division to the mid-plastid, but their roles are poorly understood. Using genetic analyses in Arabidopsis thaliana, we show that ARC3 mediates division-site placement by inhibiting Z-ring assembly, and MinD1 and MinE1 function through ARC3. ftsZ1 null mutants exhibited some mid-plastid FtsZ2 rings and constrictions, whereas neither constrictions nor FtsZ1 rings were observed in mutants lacking FtsZ2, suggesting FtsZ2 is the primary determinant of Z-ring assembly in vivo. arc3 ftsZ1 double mutants exhibited multiple parallel but no mid-plastid FtsZ2 rings, resembling the Z-ring phenotype in arc3 single mutants and showing that ARC3 affects positioning of FtsZ2 rings as well as Z rings. ARC3 overexpression in the wild type and ftsZ1 inhibited Z-ring and FtsZ2-ring assembly, respectively. Consistent with its effects in vivo, ARC3 interacted with FtsZ2 in two-hybrid assays and inhibited FtsZ2 assembly in a heterologous system. Our studies are consistent with a model wherein ARC3 directly inhibits Z-ring assembly in vivo primarily through interaction with FtsZ2 in heteropolymers and suggest that ARC3 activity is spatially regulated by MinD1 and MinE1 to permit Z-ring assembly at the mid-plastid.  相似文献   

6.
7.
As in many other eukaryotic cells, cell division in fission yeast depends on the assembly of an actin ring that circumscribes the middle of the cell. Schizosaccharomyces pombe cdc12 is an essential gene necessary for actin ring assembly and septum formation. Here we show that cdc12p is a member of a family of proteins including Drosophila diaphanous, Saccharomyces cerevisiae BNI1, and S. pombe fus1, which are involved in cytokinesis or other actin-mediated processes. Using indirect immunofluorescence, we show that cdc12p is located in the cell division ring and not in other actin structures. When overexpressed, cdc12p is located at a medial spot in interphase that anticipates the future ring site. cdc12p localization is altered in actin ring mutants. cdc8 (tropomyosin homologue), cdc3 (profilin homologue), and cdc15 mutants exhibit no specific cdc12p staining during mitosis. cdc4 mutant cells exhibit a medial cortical cdc12p spot in place of a ring. mid1 mutant cells generally exhibit a cdc12p spot with a single cdc12p strand extending in a random direction. Based on these patterns, we present a model in which ring assembly originates from a single point on the cortex and in which a molecular pathway for the functions of cytokinesis proteins is suggested. Finally, we found that cdc12 and cdc3 mutants show a syntheticlethal genetic interaction, and a proline-rich domain of cdc12p binds directly to profilin cdc3p in vitro, suggesting that one function of cdc12p in ring assembly is to bind profilin.  相似文献   

8.
The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized. In uxs1 and b3gat3 mutant larvae, biosynthesis of CS was shown to be virtually abolished, whereas these mutants still were capable of synthesizing 50% of the HS produced in control larvae. extl3 and ext2 mutants on the other hand were shown to synthesize reduced amounts of hypersulfated HS. Further, extl3 mutants produced higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies in the single mutant strains, as well as in ext2;uxs1 double mutants, was conducted. A correlation between HS and CS production and phenotypes was found, such that impaired HS biosynthesis was shown to affect chondrocyte intercalation, whereas impaired CS biosynthesis inhibited formation of the extracellular matrix surrounding chondrocytes.  相似文献   

9.
In the yeastYarrowia lipolytica the levels of the alkaline extracellular protease (AEP) and acid extracellular protease (AXP) are controlled by the pH of the growth medium. When the pH of growth medium is kept close to 4.0, levels of AXP are high and those of AEP are low, whereas at pH above 6.0 the opposite is true. Mutations which mimic the effects on the protease system of growth at alkaline pH have been identified in two genes,RPH1 andRPH2, inY. lipolytica. Detailed genetic studies showed that mutations in these two genes are dominant in heterozygous diploids, and that their effects are additive in haploid double mutants. These mutants show that pH regulates AEP expression independently from other metabolic signals. These mutants are not detectably affected in their growth rates, nor in internal pH homeostasis.  相似文献   

10.
The rubella virus (RUB) nonstructural (NS) protease is a papain-like cysteine protease (PCP) located in the NS-protein open reading frame (NSP-ORF) that cleaves the NSP-ORF translation product at a single site to produce two products, P150 (the N-terminal product) and P90 (the C-terminal product). The RUB NS protease was found not to function following translation in vitro in a standard rabbit reticulocyte lysate system, although all of the other viral PCPs do so. However, in the presence of divalent cations such as Zn2+, Cd2+, and Co2+, the RUB NS protease functioned efficiently, indicating that these cations are required either as direct cofactors in catalytic activity or for correct acquisition of three-dimensional conformation of the protease. Since other viral and cell PCPs do not require cations for activity and the RUB NS protease contains a putative zinc binding motif, the latter possibility is more likely. Previous in vivo expression studies of the RUB NS protease failed to demonstrate trans cleavage activity (J.-P. Chen et al., J. Virol. 70:4707–4713, 1996). To study whether trans cleavage could be detected in vitro, a protease catalytic site mutant and a mutant in which the C-terminal 31 amino acids of P90 were deleted were independently introduced into plasmid constructs that express the complete NSP-ORF. Cotranslation of these mutants in vitro yielded both the native and the mutated forms of P90, indicating that the protease present in the mutated construct cleaved the catalytic-site mutant precursor. Thus, RUB NS protease can function in trans.  相似文献   

11.
The roles of two kinesin-related proteins, Kip2p and Kip3p, in microtubule function and nuclear migration were investigated. Deletion of either gene resulted in nuclear migration defects similar to those described for dynein and kar9 mutants. By indirect immunofluorescence, the cytoplasmic microtubules in kip2Δwere consistently short or absent throughout the cell cycle. In contrast, in kip3Δ strains, the cytoplasmic microtubules were significantly longer than wild type at telophase. Furthermore, in the kip3Δ cells with nuclear positioning defects, the cytoplasmic microtubules were misoriented and failed to extend into the bud. Localization studies found Kip2p exclusively on cytoplasmic microtubules throughout the cell cycle, whereas GFP-Kip3p localized to both spindle and cytoplasmic microtubules. Genetic analysis demonstrated that the kip2Δ kar9Δ double mutants were synthetically lethal, whereas kip3Δ kar9Δ double mutants were viable. Conversely, kip3Δ dhc1Δ double mutants were synthetically lethal, whereas kip2Δ dhc1Δ double mutants were viable. We suggest that the kinesin-related proteins, Kip2p and Kip3p, function in nuclear migration and that they do so by different mechanisms. We propose that Kip2p stabilizes microtubules and is required as part of the dynein-mediated pathway in nuclear migration. Furthermore, we propose that Kip3p functions, in part, by depolymerizing microtubules and is required for the Kar9p-dependent orientation of the cytoplasmic microtubules.  相似文献   

12.
Aspects of protein disulfide isomerase (PDI) function have been studied in yeast in vivo. PDI contains two thioredoxin-like domains, a and a′, each of which contains an active-site CXXC motif. The relative importance of the two domains was analyzed by rendering each one inactive by mutation to SGAS. Such mutations had no significant effect on growth. The domains however, were not equivalent since the rate of folding of carboxypeptidase Y (CPY) in vivo was reduced by inactivation of the a domain but not the a′ domain. To investigate the relevance of PDI redox potential, the G and H positions of each CGHC active site were randomly mutagenized. The resulting mutant PDIs were ranked by their growth phenotype on medium containing increasing concentrations of DTT. The rate of CPY folding in the mutants showed the same ranking as the DTT sensitivity, suggesting that the oxidative power of PDI is an important factor in folding in vivo. Mutants with a PDI that cannot perform oxidation reactions on its own (CGHS) had a strongly reduced growth rate. The growth rates, however, did not correlate with CPY folding, suggesting that the protein(s) required for optimal growth are dependent on PDI for oxidation. pdi1-deleted strains overexpressing the yeast PDI homologue EUG1 are viable. Exchanging the wild-type Eug1p C(L/I)HS active site sequences for C(L/I)HC increased the growth rate significantly, however, further highlighting the importance of the oxidizing function for optimal growth.  相似文献   

13.
The meiosis-specific HOP1 gene is important both for crossing over between homologs and for production of viable spores. hop1 diploids fail to assemble synaptonemal complex (SC), which normally provides the framework for meiotic synapsis. Immunochemical methods have shown that the 70-kDa HOP1 product is a component of the SC. To assess its molecular function, we have purified Hop1 protein to homogeneity and shown that it forms dimers and higher oligomers in solution. Consistent with the zinc-finger motif in its sequence, the purified protein contained about 1 mol equivalent of zinc whereas mutant protein lacking a conserved cysteine within this motif did not. Electrophoretic gel mobility shift assays with different forms of M13 DNA showed that Hop1 binds more readily to linear duplex DNA and negatively superhelical DNA than to nicked circular duplex DNA and even more weakly to single-stranded DNA. Linear duplex DNA binding was enhanced by the addition of Zn2+, was stronger for longer DNA fragments, and was saturable to about 55 bp/protein monomer. Competitive inhibition of this binding by added oligonucleotides suggests preferential affinity for G-rich sequences and weaker binding to poly(dA-dT). Nuclear extracts of meiotic cells caused exonucleolytic degradation of linear duplex DNA if the extracts were prepared from hop1 mutants; addition of purified Hop1 conferred protection against this degradation. These findings suggest that Hop1 acts in meiotic synapsis by binding to sites of double-strand break formation and helping to mediate their processing in the pathway to meiotic recombination.  相似文献   

14.
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the “core complex” that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10''s TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.  相似文献   

15.
The dorsal skin of the crawfish frog, Rana areolata, is associated with numerous prominent granular glands. Proteomic analysis of electrically stimulated skin secretions from these glands enabled the identification and characterization of eight peptides with antimicrobial and hemolytic activity belonging to the previously identified brevinin-1, temporin-1, palustrin-2, palustrin-3, esculentin-1 (two peptides), and ranatuerin-2 (two peptides) families. The primary structures of the peptides were consistent with a close phylogenetic relationship between R. areolata and the pickerel frog, Rana palustris. Three structurally related cationic, cysteine-containing peptides were identified that show sequence similarity to peptide Leucine–Arginine, a peptide with immunomodulatory and histamine-releasing properties from the skin of the northern leopard frog, Rana pipiens. The skin secretions contained a 61-amino-acid-residue peptide that inhibited porcine trypsin and possessed a 10-cysteine-residue motif that is characteristic of a protease inhibitor previously isolated from the parasitic nematode, Ascaris suum. A 48-amino-acid-residue protein containing eight cysteine residues in the whey acidic protein (WAP) motif, characteristic of elafin (skin-derived antileukoproteinase) and secretory leukocyte protease inhibitor, was also isolated. The data suggest that protease inhibitors in skin secretions may play a role complementary to cationic, amphipathic α-helical peptides in protecting anurans from invasions by microorganisms.  相似文献   

16.
Hairpin or tetrahelical structures formed by a d(CGG)n sequence in the FMR1 gene are thought to promote expansion of the repeat tract. Subsequent to this expansion FMR1 is silenced and fragile X syndrome ensues. The injurious effects of d(CGG)n secondary structures may potentially be countered by agents that act to decrease their stability. We showed previously that the hnRNP-related protein CBF-A destabilized G′2 bimolecular tetraplex structures of d(CGG)n. Analysis of mutant proteins revealed that the CBF-A-conserved domains RNP11 and ATP/GTP binding box were sufficient and necessary for G′2 d(CGG)n disruption while the RNP21 motif inhibited the destabilization activity. Here, we report that a C-terminal fragment of CBF-A whose only remaining conserved domain was the ATP/GTP binding motif, disrupted G′2 d(CGG)n more selectively than wild-type CBF-A. Further, two additional members of the hnRNP family, hnRNP A2 and mutant hnRNP A1 effectively destabilized G′2 d(CGG)n. Examination of mutant hnRNP A2 proteins revealed that, similar to CBF-A, their RNP11 element and ATP/GTP binding motif mediated G′2 d(CGG)n disruption, while the RNP21 element blocked their action. Similarly, the RNP11 and RNP21 domains of hnRNP A1 were, respectively, positive and negative mediators of G′2 d(CGG)n destabilization. Last, employing the same conserved motifs that mediated disruption of the DNA tetraplex G′2 d(CGG)n, hnRNP A2 destabilized r(CGG)n RNA tetraplex.  相似文献   

17.
Cyclophilin A is the target of the immunosuppressant cyclosporin A (CsA) and is encoded by a single unique gene conserved from yeast to humans. In the pathogenic fungus Cryptococcus neoformans, two homologous linked genes, CPA1 and CPA2, were found to encode two conserved cyclophilin A proteins. In contrast to Saccharomyces cerevisiae, in which cyclophilin A mutations confer CsA resistance but few other phenotypes, cyclophilin A mutations conferred dramatic phenotypes in C. neoformans. The Cpa1 and Cpa2 cyclophilin A proteins play a shared role in cell growth, mating, virulence and CsA toxicity. The Cpa1 and Cpa2 proteins also have divergent functions. cpa1 mutants are inviable at 39°C and attenuated for virulence, whereas cpa2 mutants are viable at 39°C and fully virulent. cpa1 cpa2 double mutants exhibited synthetic defects in growth and virulence. Cyclophilin A active site mutants restored growth of cpa1 cpa2 mutants at ambient but not at higher temperatures, suggesting that the prolyl isomerase activity of cyclophilin A has an in vivo function.  相似文献   

18.
In Vivo Studies of Temperature-Sensitive recB and recC Mutants   总被引:31,自引:23,他引:8       下载免费PDF全文
Some in vivo properties of Escherichia coli K-12 strains carrying recB270 (formerly recBts1) and recC271 (formerly recCts1) mutations have been determined. Single recB270 and recC271 mutants appear normal at 30 C with regard to ultraviolet and mitomycin C sensitivity, recombination proficiency, and viability. At 43 C these strains become sensitive to ultraviolet and mitomycin C, while showing only a slight decrease in recombination proficiency. The viable titers of the single mutants are somewhat reduced at 43 C. Double mutant strains carrying polA1 and recB270 or recC271 are inviable at 43 C. The double mutant strain (recB270 recC271) is sensitive to both UV and mitomycin C at 30 C, but shows only slightly reduced recombination proficiency. At 43 C the strain resembles absolute recB and recC mutants in all respects. In addition, the double mutant strain exhibits a temperature-induced drop in viable titer. The triple mutant polA1 recB270 recC271 is viable at 30 C. Two hypotheses are advanced to explain these results.  相似文献   

19.
Tetradecameric Clp protease core complexes in non-photosynthetic plastids of roots, flower petals, and in chloroplasts of leaves of Arabidopsis thaliana were purified based on native mass and isoelectric point and identified by mass spectrometry. The stoichiometry between the subunits was determined. The protease complex consisted of one to three copies of five different serine-type protease Clp proteins (ClpP1,3-6) and four non-proteolytic ClpR proteins (ClpR1-4). Three-dimensional homology modeling showed that the ClpP/R proteins fit well together in a tetradecameric complex and also indicated unique contributions for each protein. Lateral exit gates for proteolysis products are proposed. In addition, ClpS1,2, unique to land plants, tightly interacted with this core complex, with one copy of each per complex. The three-dimensional modeling show that they do fit well on the axial sites of the ClpPR cores. In contrast to plastids, plant mitochondria contained a single approximately 320-kDa homo-tetradecameric ClpP2 complex, without association of ClpR or ClpS proteins. It is surprising that the Clp core composition appears identical in all three plastid types, despite the remarkable differences in plastid proteome composition. This suggests that regulation of plastid proteolysis by the Clp machinery is not through differential regulation of ClpP/R/S gene expression, but rather through substrate recognition mechanisms and regulated interaction of chaperone-like molecules (ClpS1,2 and others) to the ClpP/R core.  相似文献   

20.
Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号