首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conventional approach in bioactive peptides discovery, which includes extensive bioassay-guided fractionation and purification processes, is tedious, time-consuming and not always successful. The recently developed bioinformatics-driven in silico approach is rapid and cost-effective; however, it lacks an actual physiological significance. In this study a new integrated peptidomics and in silico method, which combines the advantages of the conventional and in silico approaches by using the pool of peptides identified in a food hydrolysate as the starting point for subsequent application of selected bioinformatics tools, has been developed. Pinto bean protein extract was in vitro digested and peptides were identified by peptidomics. The pool of obtained peptides was screened by in silico analysis and structure–activity relationship modelling. Three peptides (SIPR, SAPI and FVPH) were selected as potential inhibitors of the dipeptidyl-peptidase-IV (DPP-IV) enzyme by this integrated approach. In vitro bioactivity assay showed that all three peptides were able to inhibit DPP-IV with the tetra-peptide SAPI showing the highest activity (IC50 = 57.7 μmol/L). Indeed, a new possible characteristic of peptides (i.e., the presence of an S residue at the N-terminus) able to inhibit DPP-IV was proposed.  相似文献   

2.

Hepatitis C virus (HCV) infection is a major global issue that leads to serious liver disease such as chronic liver inflammation and hepatocellular carcinoma. At present, no approved vaccine is available for control or treatment of HCV infection. Therefore, the development of an efficient vaccine against HCV is an urgent need. Today, designing an effective vaccine against hepatitis C is one of the outmost propriety for researchers. Fusion protein vaccines containing the immunogen proteins and adjuvant molecules are able to stimulate both humoral and cellular responses that are crucial for eradicating HCV infection. Herein, in silico design of fusion forms of vaccine candidates against HCV, including flagellin (fliC) from Pseudomonas aeruginosa and NS5B antigen (NT300) from HCV was performed. First, two forms of fusion protein (NT300-fliC and fliC-NT300) were designed and analyzed using different bioinformatics tools. For this aim, the Iterative threading assembly refinement (I-TASSER) server was used for modeling the fusion forms of protein; namely, NT300-fliC and fliC-NT300, then the high-rank 3D model of fusion protein was selected, subsequently various physico-chemical, and structural parameters were examined bioinformatically. After the selection of the best construct (fliC-NT300), the interaction of flagellin part of vaccine with toll-like receptor 5 (TLR5) was evaluated via docking studies. Our results represented that based on data obtained from various servers, and the docking analyses of two constructs, fliC-NT300 fusion form showed better results than NT300-fliC. For this reason, the fliC-NT300 form was selected for further evaluations. In sum, structural and immunological computational studies showed that the fliC-NT300 can be introduced as a prophylactic or therapeutic candidate vaccine against the HCV, after the efficacy of that was confirmed via in vitro and in vivo assays.

  相似文献   

3.
Middle East respiratory syndrome coronavirus (MERS-CoV) with pandemic potential is a major worldwide threat to public health. However, vaccine development for this pathogen lags behind as immunity associated with protection is currently largely unknown. In this study, an immunoinformatics-driven genome-wide screening strategy of vaccine targets was performed to thoroughly screen the vital and effective dominant immunogens against MERS-CoV. Conservancy and population coverage analysis of the epitopes were done by the Immune Epitope Database. The results showed that the nucleocapsid (N) protein of MERS-CoV might be a better protective immunogen with high conservancy and potential eliciting both neutralizing antibodies and T-cell responses compared with spike (S) protein. Further, the B-cell, helper T-cell and cytotoxic T lymphocyte (CTL) epitopes were screened and mapped to the N protein. A total of 15 linear and 10 conformal B-cell epitopes that may induce protective neutralizing antibodies were obtained. Additionally, a total of 71 peptides with 9-mer core sequence were identified as helper T-cell epitopes, and 34 peptides were identified as CTL epitopes. Based on the maximum HLA binding alleles, top 10 helper T-cell epitopes and CTL epitopes that may elicit protective cellular immune responses against MERS-CoV were selected as MERS vaccine candidates. Population coverage analysis showed that the putative helper T-cell epitopes and CTL epitopes could cover the vast majority of the population in 15 geographic regions considered where vaccine would be employed. The B- and T-cell stimulation potentials of the screened epitopes is to be further validated for their efficient use as vaccines against MERS-CoV. Collectively, this study provides novel vaccine target candidates and may prompt further development of vaccines against MERS-CoV and other emerging infectious diseases.  相似文献   

4.
Polymorphisms in the human prion proteins lead to amino acid substitutions by the conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt–Jakob disease, Gerstmann–Straussler–Scheinker disease and fatal familial insomnia. Cation–π interaction is a non-covalent binding force that plays a significant role in protein stability. Here, we employ a novel approach by combining various in silico tools along with molecular dynamics simulation to provide structural and functional insight into the effect of mutation on the stability and activity of mutant prion proteins. We have investigated impressions of prevalent mutations including 1E1S, 1E1P, 1E1U, 1E1P, 1FKC and 2K1D on the human prion proteins and compared them with wild type. Structural analyses of the models were performed with the aid of molecular dynamics simulation methods. According to our results, frequently occurred mutations were observed in conserved sequences of human prion proteins and the most fluctuation values appear in the 2K1D mutant model at around helix 4 with residues ranging from 190 to 194. Our observations in this study could help to further understand the structural stability of prion proteins.  相似文献   

5.

Background

Ethanol-induced gut barrier disruption is associated with several gastrointestinal and liver disorders.

Aim

Since human data on effects of moderate ethanol consumption on intestinal barrier integrity and involved mechanisms are limited, the objectives of this study were to investigate effects of a single moderate ethanol dose on small and large intestinal permeability and to explore the role of mitogen activated protein kinase (MAPK) pathway as a primary signaling mechanism.

Methods

Intestinal permeability was assessed in 12 healthy volunteers after intraduodenal administration of either placebo or 20 g ethanol in a randomised cross-over trial. Localization of the tight junction (TJ) and gene expression, phosphorylation of the MAPK isoforms p38, ERK and JNK as indicative of activation were analyzed in duodenal biopsies. The role of MAPK was further examined in vitro using Caco-2 monolayers.

Results

Ethanol increased small and large intestinal permeability, paralleled by redistribution of ZO-1 and occludin, down-regulation of ZO-1 and up-regulation of myosin light chain kinase (MLCK) mRNA expression, and increased MAPK isoforms phosphorylation. In Caco-2 monolayers, ethanol increased permeability, induced redistribution of the junctional proteins and F-actin, and MAPK and MLCK activation, as indicated by phosphorylation of MAPK isoforms and myosin light chain (MLC), respectively, which could be reversed by pretreatment with either MAPK inhibitors or the anti-oxidant L-cysteine.

Conclusions

Administration of moderate ethanol dosage can increase both small and colon permeability. Furthermore, the data indicate a pivotal role for MAPK and its crosstalk with MLCK in ethanol-induced intestinal barrier disruption.

Trial Registration

ClinicalTrials.gov NCT00928733  相似文献   

6.
Activated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt. Using synthetic peptides and a set of recombinant proteins expressing mutants of the LBR RS domain we now demonstrate that while all serines of the RS domain represent more or less equal phosphoacceptor sites for SRPK1, Ser80 and Ser82 are mainly targeted by Akt. 3D-modeling combined with molecular dynamics (MD) simulations show that amongst short, overlapping LBR RS-containing peptides complying with the minimum Akt recognition consensus sequence, only those bearing phosphosites either at Ser80 or Ser82 are able to fit into the active site of Akt, at least as effectively as its known substrate, GSK3-β. Combined our results provide evidence that Akt kinases directly phosphorylate an RS domain-containing protein and that both the residues N-terminal the phosphosite and at position +1 are essential for Akt specificity, with the latter substrate position being compatible with the arginine residue of RS-repeats.  相似文献   

7.
The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrPC) into the scrapie form (PrPSc) is the hallmark of TSEs. Once formed, PrPSc aggregates and catalyzes PrPC misfolding into new PrPSc molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrPSc (ScN2a) for their ability to inhibit PK-resistant PrP (PrPRes) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrPRes in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrPRes from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP109–149). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrPRes in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are attractive candidates for prion disease therapy.  相似文献   

8.
The present study was designed to appraise the photoprotective, antioxidant, and antibacterial bioactivities of Ruellia tuberosa leaves extracts (RtPE, RtChl, RtEA, RtAc, RtMe, and RtHMe). The results showed that, RtHMe extracts of R. tuberosa was rich in total phenolic content, i. e., 1.60 mgGAE/g dry extract, while highest total flavonoid content was found in RtAc extract, i. e., 0.40 mgQE/g. RtMe showed effective antioxidant activity (%RSA: 58.16) at the concentration of 120 μL. RtMe, RtEA and RtHMe exhibited effective in vitro antibacterial activity against Gram-negative bacteria (E. coli). In silico docking studies revealed that paucifloside (−11.743 kcal/mol), indole-3-carboxaldehyde (−7.519 kcal/mol), nuomioside (−7.275 kcal/mol), isocassifolioside (−6.992 kcal/mol) showed best docking score against PDB ID 2EX8 [penicillin binding protein 4 (dacB) from Escherichia coli, complexed with penicillin-G], PDB ID 6CQA (E. coli dihydrofolate reductase protein complexed with inhibitor AMPQD), PDB ID 2Y2I [Penicillin-binding protein 1B in complex with an alkyl boronate (ZA3)] and PDB ID 2OLV (from S. aureus), respectively. Docked phytochemicals also showed good drug likeness properties.  相似文献   

9.
Abstract

Protein Tyrosine Phosphatase 1B (PTP1B) has been shown to be a negative regulator of insulin signaling by dephosphorylating key tyrosine residues within the regulatory domain of the β-subunit of the insulin receptor. Recent gene knockout studies in mice have shown the mice to have increased insulin sensitivity and improved glucose tolerance. Furthermore, these mice also exhibited a resistance to diet induced obesity. Inhibitors of PTP1B would have the potential of enhancing insulin action by prolonging the phosphorylated state of the insulin receptor. In addition, recent clinical studies have shown that the haplotype ACTTCAG0 of the PTPN1 gene, which encodes PTP1B, is a major risk contributor to type 2 diabetes mellitus (T2DM). Thus, there is compelling evidence that small molecule inhibitors of PTP1B may be effective in treating insulin resistance at an early stage, thereby leading to a prevention strategy for T2DM and obesity.

Based on the crystal structure of the complex of PTP1B with a known inhibitor, we have identified a tetrapeptide inhibitor with the sequence WKPD. Docking calculations indicate that this peptide is as potent as the existing inhibitors. Moreover, the peptide is also found to be selective for PTP1B with a greatly reduced potency against other biologically important protein tyrosine phosphatases such as PTP-LAR, Calcineurin, and the highly homologous T-Cell Protein Tyrosine Phosphatase (TCPTP). Thus the designed tetrapeptide is a suitable lead compound for the development of new drugs against type 2 diabetes and obesity.  相似文献   

10.
A new xanthone derivative, aspidxanthone A ( 1 ), and three known compounds ((2S)-1-(β-D-galactopyranosyloxy)-3-(hexadecanoyloxy)propan-2-yl (9Z,12Z)-octadeca-9,12-dienoate ( 2 ), (25S)-spirostane-1β,3α,5β-triol ( 3 ), and asparenyldiol ( 4 )) were isolated from the whole of the endemic species Aspidistra letreae in Vietnam. Their structures were elucidated by means of extensive spectroscopic analyses and comparison with published data. In this study, we report the isolation and structure elucidation of a new compound aspidxanthone A, antioxidant activities of the extract and isolates 1 – 4 , and in silico molecular docking of aspidxanthone A. The ethyl acetate extract had good antioxidant activity with an IC50 value of 26.3 μg mL−1. Among the isolates, aspidxanthone A exhibited DPPH reduction activity with an IC50 value of 11.2 μM, which is in the same range as that of the positive control, ascorbic acid. The mechanism of action of aspidxanthone A on the tyrosinase and xanthine oxidase proteins have been clarified by in silico studies.  相似文献   

11.
12.

Background

Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

Methodology/Findings

Using an in-house, flow cytometry-based MHC stabilization assay we generated novel peptide binding data, from which we derived a precise two-dimensional quantitative structure-activity relationship (2D-QSAR) binding model. This allowed us to explore the peptide specificity of HLA-Cw*0102 molecule in detail. We used this model to design peptides optimized for HLA-Cw*0102-binding. Experimental analysis showed these peptides to have high binding affinities for the HLA-Cw*0102 molecule. As a functional validation of our approach, we also predicted HLA-Cw*0102-binding peptides within the HIV-1 genome, identifying a set of potent binding peptides. The most affine of these binding peptides was subsequently determined to be an epitope recognized in a subset of HLA-Cw*0102-positive individuals chronically infected with HIV-1.

Conclusions/Significance

A functionally-validated in silico-in vitro approach to the reliable and efficient prediction of peptide binding to a previously uncharacterized human MHC allele HLA-Cw*0102 was developed. This technique is generally applicable to all T cell epitope identification problems in immunology and vaccinology.  相似文献   

13.
We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2 −/NO3 data from “middle-aged” (6–8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for “young” (2–3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging.  相似文献   

14.
Leishmaniasis is a growing health problem worldwide. As there are certain drawbacks with the drugs currently used to treat human leishmaniasis and resistance to these drugs is emerging, there is a need to develop novel antileishmanial compounds, among which isoquinoline alkaloids are promising candidates. In this study, 18 novel oxoisoaporphine derivatives were synthesized and their possible antileishmanial activity was evaluated. The in vitro activity of these derivatives against Leishmania amazonensis axenic amastigotes was first evaluated, and the selected compounds were then tested in an inhibition assay with promastigotes of L. infantum, L. braziliensis, L. amazonensis and L. guyanensis, and with intracellular amastigotes of L. infantum and L. amazonensis. Finally, the most active compounds, OXO 1 (2,3-dihydro-7H-dibenzo[de,h]quinolin-7-one) and OXO 13 (2,3,8,9,10,11-hexahydro-7H-dibenzo[de,h]quinolin-7-one), were tested in BALB/c mice infected with L. infantum. Treatment of mice at a dose of 10 mg/kg with OXO 1 yielded significant reductions (p<0.05) in parasite burden in liver and spleen (99% and 78%, respectively) whereas with OXO 13 were not significant. Although previous reports suggest that this family of molecules displays inhibitory activity against monoamine oxidase A and acetylcholinesterase, these enzymes were not confirmed as targets for antileishmanial activity on the basis of the present results. However, after development of a new bioinformatics model to analyze the Leishmania proteome, we were able to identify other putative targets for these molecules. The most promising candidates were four proteins: two putative pteridine reductase 2 (1MXF and 1MXH), one N-myristoyltransferase (2WUU) and one type I topoisomerase (2B9S).  相似文献   

15.
Probiotics and Antimicrobial Proteins - Antimicrobial resistance (AMR) is a global concern, and as soon as new antibiotics are introduced, resistance to those agents emerges. Therefore, there is an...  相似文献   

16.
Proteases are a ubiquitous group of enzymes that play key roles in the life cycle of parasites, in the host-parasite relationship, and in the pathogenesis of parasitic diseases. Furthermore, proteases are druggable targets for the development of new anti-parasitic therapy. The subtilisin protease (SUB; Clan SB, family S8) of Leishmania donovani was cloned and found to possess a unique catalytic triad. This gene was then deleted by gene knock-out, which resulted in reduced ability by the parasite to undergo promastigote to amastigote differentiation in vitro. Electron microscopy of SUB knock-out amastigotes revealed abnormal membrane structures, retained flagella, and increased binucleation. SUB-deficient Leishmania displayed reduced virulence in both hamster and murine infection models. Histology of spleens from SUB knock-out-infected hamsters revealed the absence of psammoma body calcifications indicative of the granulomatous lesions that occur during Leishmania infection. To delineate the specific role of SUB in parasite physiology, two-dimensional gel electrophoresis was carried out on SUB−/− versus wild-type parasites. SUB knock-out parasites showed altered regulation of the terminal peroxidases of the trypanothione reductase system. Leishmania and other trypanosomatids lack glutathione reductase, and therefore rely on the novel trypanothione reductase system to detoxify reactive oxygen intermediates and to maintain redox homeostasis. The predominant tryparedoxin peroxidases were decreased in SUB−/− parasites, and higher molecular weight isoforms were present, indicating altered processing. In addition, knock-out parasites showed increased sensitivity to hydroperoxide. These data suggest that subtilisin is the maturase for tryparedoxin peroxidases and is necessary for full virulence.  相似文献   

17.
Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli.  相似文献   

18.

Background

Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses.

Methodology

Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cell migration, including that of CCR4+ Tregs.

Significance

Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.  相似文献   

19.
In this short paper we argue for the relevance and value of theoretical models in the field of origins of life, but also claim that both theoreticians and experimentalists should make an effort to come together and interact more closely to obtain more fruitful and significant results. As an example, we present our own modeling approach to protocell dynamics, including some simulation results, to show that it is possible to develop computational tools that start bridging that traditional gap between theory and experiments. Presented at: International School of Complexity – 4th Course: Basic Questions on the Origins of Life; “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, 1–6 October 2006.  相似文献   

20.
Catechin, a yellow colored molecule obtained from the wood of Acacia catechu was analyzed for its interaction with synthetic DNA duplexes using spectroscopic analysis. UV-Visible spectroscopic analysis revealed the non-intercalative binding mode. Fourier Transform Infrared spectroscopy (FTIR) analysis expose chemical shift indicated by various vibrational stretches and an increase in the intensity of base stacking was observed by Circular Dichroism (CD), respectively. This inference was further confirmed through nuclear staining technique and also in electrophoretic technique; the dye quenches the fluorescent intensity of ethidium bromide. The result of fluorescence spectroscopy was in concordance with the electrophoretic technique. In addition, the spectroscopic results were in accordance with the molecular docking studies of specific catechin compound from the catechu dye with CT-DNA. This kind of site specificity is a gain in the medicinal field as the drug can be DNA targeted for cancer therapeutics. The present work reveals that catechu dye has a noteworthy application in the field of medical bioscience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号