首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of mineral-bound Pi by solubilizing Al3+, Fe3+, and Ca2+ phosphates in the rhizosphere. Harsh hakea thrives in the nutrient-impoverished, ancient soils of southwestern Australia. Proteoid roots from Pi-starved harsh hakea were analyzed over 20 d of development to correlate changes in malate and citrate exudation with PEPC activity, posttranslational modifications (inhibitory monoubiquitination versus activatory phosphorylation), and kinetic/allosteric properties. Immature proteoid roots contained an equivalent ratio of monoubiquitinated 110-kD and phosphorylated 107-kD PEPC polypeptides (p110 and p107, respectively). PEPC purification, immunoblotting, and mass spectrometry indicated that p110 and p107 are subunits of a 430-kD heterotetramer and that they both originate from the same plant-type PEPC gene. Incubation with a deubiquitinating enzyme converted the p110:p107 PEPC heterotetramer of immature proteoid roots into a p107 homotetramer while significantly increasing the enzyme’s activity under suboptimal but physiologically relevant assay conditions. Proteoid root maturation was paralleled by PEPC activation (e.g. reduced Km [PEP] coupled with elevated I50 [malate and Asp] values) via in vivo deubiquitination of p110 to p107, and subsequent phosphorylation of the deubiquitinated subunits. This novel mechanism of posttranslational control is hypothesized to contribute to the massive synthesis and excretion of organic acid anions that dominates the carbon metabolism of the mature proteoid roots.Phosphoenolpyruvate (PEP) carboxylase (PEPC; EC 4.1.1.31) is a ubiquitous and tightly regulated cytosolic enzyme of vascular plants that is also widely distributed in green algae and bacteria. PEPC catalyzes the irreversible β-carboxylation of PEP to form oxaloacetate (OAA) and inorganic phosphate (Pi). Vascular plant PEPCs belong to a small multigene family encoding several closely related plant-type PEPCs (PTPCs), along with a distantly related bacterial-type PEPC (BTPC; O’Leary et al., 2011a). PTPC genes encode 105- to 110-kD polypeptides that typically assemble as approximate 400-kD Class-1 PEPC homotetramers. In contrast, BTPC genes encode larger 116- to 118-kD polypeptides owing to a unique intrinsically disordered region that mediates BTPC’s tight interaction with coexpressed PTPC subunits. This association results in the formation of unusual Class-2 PEPC heterooctameric complexes that are largely desensitized to allosteric effectors and that dynamically associate with the surface of mitochondria in vivo (O’Leary et al., 2009, 2011a; Igawa et al., 2010; Park et al., 2012).The critical role of Class-1 PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. Class-1 PEPCs also fulfill a wide range of crucial nonphotosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis (O’Leary et al., 2011a). Class-1 PEPCs are subject to a complex set of posttranslational controls including allosteric effectors, covalent modification via phosphorylation or monoubiquitination, and protein-protein interactions (Uhrig et al., 2008; O’Leary et al., 2009, 2011a, 2011b). Allosteric activation by Glc-6-P and inhibition by l-malate are routinely observed, whereas phosphorylation and dephosphorylation are catalyzed by a Ca2+-independent PEPC protein kinase (PPCK) and a protein phosphatase type-2A (PP2A), respectively (O’Leary et al., 2011a). Phosphorylation at a conserved N-terminal seryl residue activates Class-1 PEPCs by decreasing inhibition by malate while increasing activation by Glc-6-P. By contrast, Class-1 PEPC is subject to inhibitory monoubiquitination during castor oil (Ricinus communis) seed (COS) germination, or following depodding of developing COS (Uhrig et al., 2008; O’Leary et al., 2011b). Immunoblots of germinating COS extracts revealed a 1:1 ratio of immunoreactive 110- and 107-kD PTPC polypeptides (p110 and p107, respectively). PEPC purification and mass spectrometry (MS) demonstrated that (1) p110 and p107 are subunits of a 440-kD Class-1 PEPC heterotetramer, (2) both subunits arise from the same PTPC gene (RcPpc3) that also encodes the phosphorylated 410-kD Class-1 PEPC homotetramer of intact developing COS, and (3) p110 is a monoubiquitinated form of p107 (Uhrig et al., 2008). The monoubiquitination site (Lys-628) of COS p110 is conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Incubation with a deubiquitinating enzyme converted the Class-1 PEPC p110:p107 heterotetramer into a p107 homotetramer while exerting significant effects on the enzyme’s kinetic properties (Uhrig et al., 2008). PTPC monoubiquitination rather than phosphorylation is widespread throughout the astor plant and appears to be the predominant posttranslational modification (PTM) of Class-1 PEPC that occurs in unstressed plants (O’Leary et al., 2011b). The distinctive developmental patterns of Class-1 PEPC phosphoactivation versus monoubiquitination-inhibition indicated that these PTMs might be mutually exclusive in the castor plant (O’Leary et al., 2011a, 2011b).Substantial evidence indicates that PEPC plays a pivotal role in plant acclimation to nutritional Pi deficiency (Duff et al., 1989; Vance et al., 2003; O’Leary et al., 2011a; Plaxton and Tran, 2011; Supplemental Fig. S1), a common abiotic stress that frequently limits plant growth in natural ecosystems. The marked induction of Class-1 PEPCs during Pi stress has been linked to the synthesis and excretion of large amounts of organic acid anions by roots of Pi-starved (–Pi) plants (O’Leary et al., 2011a; Uhde-Stone et al., 2003; Vance et al., 2003; Shane et al., 2004a). The excreted organic acids chelate metal cations such as Al3+ and Ca2+ that immobilize Pi in the soil, thus increasing soluble Pi concentrations by up to 1,000-fold (Vance et al., 2003). Harsh hakea (Hakea prostrata) is a perennial nonmycotroph that has evolved a host of traits that allow it to thrive in the nutrient-impoverished, ancient soils of western Australia. A crucial adaptation of harsh hakea is its proteoid roots, which excrete copious quantities of citrate and malate to mediate Pi solubilization and acquisition from the soil’s mineral-bound Pi (Supplemental Figs. S1 and S2; Shane et al., 2003, 2004a, 2004b; Shane and Lambers, 2005). Shane and coworkers (2004a) correlated proteoid root development in –Pi harsh hakea with marked increases in respiration, internal carboxylate concentrations, and rates of carboxylate exudation. Immunoblotting indicated that PEPC abundance remained relatively constant during proteoid root development, except in senescing 3-week-old roots, where it showed a marked decline. The PEPC immunoblots also revealed approximately 110- and 100-kD immunoreactive polypeptides that were of equal intensity in young proteoid roots, whereas mature proteoid roots showed a marked reduction in the p110 (Shane et al., 2004a). The possible contribution of PTMs such as phosphorylation to the in vivo activation of proteoid root PEPCs is currently unclear (e.g. see Uhde-Stone et al., 2003). However, this is feasible since the pronounced induction of PPCK genes coupled with the reversible phosphorylation-activation of a Class-1 PEPC isozyme (AtPPC1) has been conclusively demonstrated in –Pi Arabidopsis (Arabidopsis thaliana) suspension cells and seedlings (Gregory et al., 2009).The goal of the current study was to test the hypothesis that PEPC PTMs contribute to the metabolic adaptations of harsh hakea proteoid roots. We report a novel metabolic control paradigm that involves the in vivo deubiquitination and consequent kinetic activation of a phosphorylated form of a C3 plant Class-1 PEPC.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号