首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.  相似文献   

2.
The importance of the pathological changes in proteoglycans has driven the need to study and design novel chemical tools to control proteoglycan synthesis. Accordingly, we tested the fluorinated analogue of glucosamine (4-fluoro-N-acetyl-glucosamine (4-F-GlcNAc)) on the synthesis of heparan sulfate (HS) and chondroitin sulfate (CS) by murine airway smooth muscle (ASM) cells in the presence of radiolabeled metabolic precursors. Secreted and cell-associated CS and HS were assessed for changes in size by Superose 6 chromatography. Treatment of ASM cells with 4-F-GlcNAc (100 μm) reduced the quantity (by 64.1–76.6%) and decreased the size of HS/CS glycosaminoglycans associated with the cell layer (Kav shifted from 0.30 to 0.45). The quantity of CS secreted into the medium decreased by 65.7–73.0%, and the size showed a Kav shift from 0.30 to 0.50. Treatment of ASM cells with 45 μm and 179 μm 4-F-GlcNAc in the presence of a stimulator of CS synthesis, 4-methylumbelliferyl-β-d-xyloside, reduced the amount of the xyloside-CS chains by 65.4 and 87.0%, respectively. The size of xyloside-CS chains synthesized in the presence of 4-F-GlcNAc were only slightly larger than those with xyloside treatment alone (Kav of 0.55 compared with that of 0.6). The effects of 4-F-GlcNAc to inhibit CS synthesis were not observed with equimolar concentrations of glucosamine. We propose that 4-F-GlcNAc inhibits CS synthesis by inhibiting 4-epimerization of UDP-GlcNAc to UDP-GalNAc, thereby depleting one of the substrates required, whereas HS elongation is inhibited by truncation when the nonreducing terminus of the growing chain is capped with 4-F-GlcNAc.The synthesis and physical properties (size and charge) of proteoglycans are altered under some pathological conditions such as cancer (1), spinal cord injury (2), atherosclerosis (3), and asthma (4). The importance of these pathological changes in proteoglycans has driven the need to study and design novel chemical tools which can control proteoglycan biosynthesis. Thus, we have studied the effect of a fluorinated analogue of glucosamine on proteoglycan synthesis in murine airway smooth muscle cells.Mono-, di-, and oligosaccharides that contain fluorine have been developed to study the enzymes involved in carbohydrate metabolism, and some of these have been shown to be inhibitors. The atomic size of fluorine is only slightly smaller (van der Waals'' radius (r′) of 135 pm) than that of oxygen (140 pm), and the C-F bond has a higher energy (485 kJ/mol) compared with that of C-O (370 kJ/mol) (5). The substitution of fluorine for oxygen at the 4-position of N-acetylglucosamine (4-F-GlcNAc)2 confers a greater electronegativity on the bond and makes it less likely to be removed from the GlcN carbon ring. It is the properties of fluorine that contribute to the unique characteristics of 4-F-GlcNAc.4-F-GlcNAc used for cell culture experiments has O-acetyl groups at several of its ring positions, which in effect increases its cell permeability compared with that of unmodified forms (6). After hydrolysis to remove the O-acetyl residues, 4-F-GlcNAc, like GlcNAc, must be converted to UDP-4-F-GlcNAc, which in turn can be a substrate (or inhibitor) of enzyme reactions that use UDP-GlcNAc. GlcN is typically used as a control compound for 4-F-GlcNAc in vitro because of its superior cell permeability characteristics when compared with acetylated GlcN derivatives. Although acetylated GlcN derivatives enter the cell via passive diffusion, GlcN can enter by both passive diffusion and through the glucose transporter 4 (7).4-F-GlcNAc and 4-F-N-acetylgalactosamine (4-F-GalNAc) have been specifically studied as potential inhibitors of cell growth for the treatment of leukemia. The IC50 values for 4-F-GlcNAc and 4F-GalNAc inhibition of leukemic cell proliferation are 34 and 35 μm, respectively (8). Moreover, by blocking polylactosamine synthesis necessary for elaboration of selectin ligands, 4-F-GlcNAc exhibits anti-inflammatory effects by reducing leukocyte homing to areas of contact allergic hypersensitivity in mice in vivo (9). Beyond effects on cell membrane glycoproteins, it has been proposed that the 4-fluorinated analogue of glucosamine truncates the GlcNAc-hexuronic acid chains on heparan sulfate (HS) by preventing the formation of the normal 1,4-glycosidic linkage between glucuronate (GlcUA) and on the nonreducing end of the growing chain (10). Thus, 4-F-GlcNAc has been suggested as a therapy for reducing amyloid deposition, which can feature HS accumulation (10, 11). Treatment of cultured hepatocytes in vitro with 4-F-GlcNAc and 4F-GalNAc (10–1000 μm) for 24 h reduced [3H]glucosamine and [35S]sulfate incorporation into cellular glycosaminoglycans (11). However, total protein synthesis was also reduced at 1000 μm (11).Although the effects of 4-F-GlcNAc on HS production have been described (10), its effects on other extracellular matrix glycosaminoglycans, chondroitin/dermatan sulfate (CS/DS) and hyaluronan (HA), have not been reported.Airway smooth muscle (ASM) cells produce HS- and CS/DS-containing proteoglycans, including perlecan, versican, and decorin (12). Using these cells, we observed that 4F-GlcNAc inhibits CS/DS synthesis nearly as effectively as it inhibits HS synthesis. Although the 4-F on a nonreducing terminal F-GlcNAc-HS chain would block further HS synthesis by preventing the formation of the GlcUAβ1,4 bond required for elongation, the glycosidic bond in CS/DS is β1,3 between hexuronic acid and GalNAc. Thus, UDP-4-F-GlcNAc could not interfere with CS/DS synthesis via the same mechanism because it cannot be 4-epimerized to UDP-4F-GalNAc. Thus, we hypothesized that UDP-4-F-GlcNAc is a potent inhibitor of the 4-epimerase required to convert UDP-GlcNAc to UDP-GalNAc, thereby depleting the cell of UDP-GalNAc, a necessary substrate for CS/DS synthesis. To explore this putative mechanism, we analyzed the inhibitory effects of 4-F-GlcNAc on intrinsic and xyloside-stimulated CS synthesis in ASM cells (13).  相似文献   

3.
The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments dp6–dp24 corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s20,w of HS dp6–dp24 showed a small rotor speed dependence, where similar s20,w values of 0.82–1.26 S (absorbance optics) and 1.05–1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6–dp24 gave radii of gyration RG values from 1.03 to 2.82 nm, cross-sectional radii of gyration RXS values from 0.31 to 0.65 nm, and maximum lengths L from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5,000 to 12,000 conformationally randomized HS structures gave best fit dp6–dp24 molecular structures that were longer and more bent than their equivalents in heparin. Alternative fits were obtained for HS dp18 and dp24, indicating their higher bending and flexibility. We conclude that HS displays bent conformations that are significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin.  相似文献   

4.
Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.  相似文献   

5.
6.
The extracellular sulfatases Sulf1 and Sulf2 remodel the 6O-sulfation state of heparan sulfate proteoglycans on the cell surface, thereby modulating growth factor signaling. Different from all other sulfatases, the Sulfs contain a unique, positively charged hydrophilic domain (HD) of about 320 amino acid residues. Using various HD deletion mutants and glutathione S-transferase (GST)-HD fusion proteins, this study demonstrates that the HD is required for enzymatic activity and acts as a high affinity heparin/heparan sulfate interaction domain. Association of the HD with the cell surface is sensitive to heparinase treatment, underlining specificity toward heparan sulfate chains. Correspondingly, isolated GST-HD binds strongly to both heparin and heparan sulfate in vitro and also to living cells. Surface plasmon resonance studies indicate nanomolar affinity of GST-HD toward immobilized heparin. The comparison of different mutants reveals that especially the outer regions of the HD mediate heparan sulfate binding, probably involving “tandem” interactions. Interestingly, binding to heparan sulfate depends on the presence of 6O-sulfate substrate groups, suggesting that substrate turnover facilitates release of the enzyme from its substrate. Deletion of the inner, less conserved region of the HD drastically increases Sulf1 secretion without affecting enzymatic activity or substrate specificity, thus providing a tool for the in vitro modulation of HS-dependent signaling as demonstrated here for the signal transduction of fibroblast growth factor 2. Taken together, the present study shows that specific regions of the HD influence different aspects of HS binding, cellular localization, and enzyme function.The human sulfatases represent a family of 17 enzymes responsible for the turnover and remodeling of sulfate esters and sulfamates. Their reaction mechanism relies on a special amino acid residue, Cα-formylglycine, which is generated post-translationally via oxidation of a conserved cysteine residue in the active site (13). Besides the lysosomal sulfatases involved in the cellular degradation of various sulfated substrates (4), two extracellular sulfatases, Sulf1 and Sulf2 (the Sulfs), have been described (5, 6). The Sulfs are endosulfatases with restricted substrate specificity toward 6O-sulfate groups of heparan sulfate (HS),2 an information-rich glycosaminoglycan (GAG) polymer attached to proteoglycans at the cell surface and in the extracellular matrix (68). HS proteoglycans (HSPGs) act as co-receptors in cell signaling pathways and provide binding sites for growth factors and morphogens via specific sulfation patterns on their HS chains. By enzymatically removing 6O-sulfate groups from HSPGs on the cell surface, Sulf1 and Sulf2 differentially regulate the activity of FGF, vascular endothelial growth factor, Wnt, and other HS ligands, thereby modulating important processes such as development, cell growth, and differentiation (912). Misregulation of the Sulfs has been linked with both tumor progression and suppression, depending on either activating or inhibitory effects upon cell signaling (1316).To investigate the physiological role of Sulf1 and Sulf2, single and double knock-out mice were generated (1721). Both Sulf1 and Sulf2 knock-out mice are characterized by increased embryonic lethality, impaired neurite outgrowth, and other neurological abnormalities in the developing and adult nervous system (22). The corresponding double knock-out mice display an obvious reduction in body weight and developmental malformations, including skeletal and renal defects (18, 19, 23). Together with biochemical analyses on the impact of Sulf loss on HS sulfation, the phenotypic observations suggest a functional cooperativity between Sulf1 and Sulf2 in modulating the 6O-sulfation of UA(2S)-GlcNS(6S) disaccharide units within the S-domains of HS chains (17, 24). Moreover, analyses of heparan sulfate disaccharide compositions from Sulf1 and Sulf2 knock-out mice cell lines have indicated dynamic influences of Sulf loss also on non-substrate N-, 2O-, and 6O-sulfate groups via modulation of sulfotransferase expression, which may contribute to the developmental defects associated with the Sulf knock-out mice (24).From the biochemical perspective, it is an important question how the Sulfs are able to recognize their HSPG substrates and how cell surface localization is achieved, despite a lack of transmembrane domains or lipid anchors. Classical GAG-binding proteins, such as antithrombin III (25) or FGF1 (26), interact with their negatively charged GAG partners via small clusters of positively charged amino acid residues. Although some consensus sequences for heparin binding have been identified (XBBXBX, XBBBXXBX, and XBBXXBBBXXBBX, where B is a basic residue and X a hydropathic) (2729), they are neither required nor sufficient. Unlike these classical GAG-binding proteins, Sulf1 and Sulf2 contain a large hydrophilic domain (HD), located between the N-terminal catalytic domain and the C-terminal domain. The HD is a unique feature of the extracellular sulfatases that is neither found in other sulfatases nor shows any homology with other known protein domains. According to sequence alignments, the HD of human Sulf1 has a size of ∼320 amino acid residues, 27% of which are basic and 14% acidic, resulting in a strong positive charge at neutral pH and a high theoretical pI of 9.8. Remarkably, the C-terminal end of the HD is composed of a cluster of 12 basic amino acid residues. Whereas the outer regions of the HD are highly conserved between Sulf1 and Sulf2 as well as between human, murine, and avian orthologs, the inner region, encoded by exons 13 and 14 in the case of human Sulf1 (6), is significantly less conserved.The role of the HD has previously been investigated for the avian ortholog QSulf2 (30). Results from this study indicated that the HD binds to negatively charged ligands and might serve to anchor the enzyme on the cell surface. Sulfate release assays indicated the necessity of the avian HD for enzymatic activity. Moreover, a very recent analysis of the HD of human Sulf1/Sulf2 revealed the presence of two furin-type proteinase cleavage sites within the inner region, explaining their partial processing into disulfide-linked subunits of 75 and 50 kDa (31). Sulf1/2 mutants, in which these sites were deleted, retained enzymatic activity but failed to potentiate Wnt signaling when overexpressed in human embryonic kidney 293 cells.Due to the observed differences in enzyme secretion and detergent solubility between the human and avian orthologs (24, 30) and the likely importance of this domain for mammalian Sulf localization and activity, we analyzed the function of the HD of human Sulf1 in mediating enzyme activity, cell surface targeting, secretion, and substrate recognition. Using different Sulf1 deletion mutants and glutathione S-transferase (GST)-HD fusion proteins, this study demonstrates that specific regions of the HD, especially at the conserved N and C termini, are responsible for heparin/HS binding, cell surface localization, and enzymatic activity of human Sulf1. Interaction analyses show that binding of the HD to heparin is significantly stronger compared with other typical heparin-binding proteins, suggesting a new mode of GAG binding. The deletion of the inner region of the HD leads to significantly increased secretion of the enzyme, allowing the purification of an active variant that is able to modulate FGF signaling in cell culture experiments.  相似文献   

7.
Activin A, a member of the transforming growth factor-β family, plays important roles in hormonal homeostasis and embryogenesis. In this study, we produced recombinant human activin A and examined its abilities to bind to extracellular matrix proteins. Recombinant activin A expressed in 293-F cells was purified as complexes of mature dimeric activin A with its pro-region. Among a panel of extracellular matrix proteins tested, recombinant activin A bound to perlecan and agrin, but not to laminins, nidogens, collagens I and IV, fibronectin, and nephronectin. The binding of recombinant activin A to perlecan was inhibited by heparin and high concentrations of NaCl and abolished by heparitinase treatment of perlecan, suggesting that activin A binds to the heparan sulfate chains of perlecan. In support of this possibility, recombinant activin A was capable of directly binding to heparin and heparan sulfate chains. Site-directed mutagenesis of recombinant activin A revealed that clusters of basic amino acid residues, Lys259-Lys263 and Lys270-Lys272, in the pro-region were required for binding to perlecan. Interestingly, deletion of the peptide segment Lys259-Gly277 containing both basic amino acid clusters from the pro-region did not impair the activity of activin A to stimulate Smad-dependent gene expressions, although it completely ablated the perlecan-binding activity. The binding of activin A to basement membrane heparan sulfate proteoglycans through the basic residues in the pro-region was further confirmed by in situ activin A overlay assays using frozen tissue sections. Taken together, the present results indicate that activin A binds to heparan sulfate proteoglycans through its pro-region and thereby regulates its localization within tissues.  相似文献   

8.
Procollagen C-proteinase enhancer-1 (PCPE-1) is an extracellular matrix (ECM) glycoprotein that can stimulate procollagen processing by procollagen C-proteinases (PCPs) such as bone morphogenetic protein-1 (BMP-1). The PCPs can process additional extracellular protein precursors and play fundamental roles in developmental processes and assembly of the ECM. The stimulatory activity of PCPE-1 is restricted to the processing of fibrillar procollagens, suggesting PCPE-1 is a specific regulator of collagen deposition. PCPE-1 consists of two CUB domains that bind to the procollagen C-propeptides and are required for PCP enhancing activity, and one NTR domain that binds heparin. To understand the biological role of the NTR domain, we performed surface plasmon resonance (SPR) binding assays, cell attachment assays as well as immunofluorescence and activity assays, all indicating that the NTR domain can mediate PCPE-1 binding to cell surface heparan sulfate proteoglycans (HSPGs). The SPR data revealed binding affinities to heparin/HSPGs in the high nanomolar range and dependence on calcium. Both 3T3 mouse fibroblasts and human embryonic kidney cells (HEK-293) attached to PCPE-1, an interaction that was inhibited by heparin. Cell attachment was also inhibited by an NTR-specific antibody and the NTR fragment. Immunofluorescence analysis revealed that PCPE-Flag binds to mouse fibroblasts and heparin competes for this binding. Cell-associated PCPE-Flag stimulated procollagen processing by BMP-1 several fold. Our data suggest that through interaction with cell surface HSPGs, the NTR domain can anchor PCPE-1 to the cell membrane, permitting pericellular enhancement of PCP activity. This points to the cell surface as a physiological site of PCPE-1 action.  相似文献   

9.
Sulfated polysaccharides such as heparin and heparan sulfate glycosaminoglycans (HSGAGs) are chemically and structurally heterogeneous biopolymers that that function as key regulators of numerous biological functions. The elucidation of HSGAG fine structure is fundamental to understanding their functional diversity, and this is facilitated by the use of select degrading enzymes of defined substrate specificity. Our previous studies have reported the cloning, characterization, recombinant expression, and structure-function analysis in Escherichia coli of the Flavobacterium heparinum 2-O-sulfatase and 6-O-sulfatase enzymes that cleave O-sulfate groups from specific locations of the HSGAG polymer. Building on these preceding studies, we report here the molecular cloning and recombinant expression in Escherichia coli of an N-sulfamidase, specific for HSGAGs. In addition, we examine the basic enzymology of this enzyme through molecular modeling studies and structure-function analysis of substrate specificity and basic biochemistry. We use the results from these studies to propose a novel mechanism for nitrogen-sulfur bond cleavage by the N-sulfamidase. Taken together, our structural and biochemical studies indicate that N-sulfamidase is a predominantly exolytic enzyme that specifically acts on N-sulfated and 6-O-desulfated glucosamines present as monosaccharides or at the nonreducing end of odd-numbered oligosaccharide substrates. In conjunction with the previously reported specificities for the F. heparinum 2-O-sulfatase, 6-O-sulfatase, and unsaturated glucuronyl hydrolase, we are able to now reconstruct in vitro the defined exolytic sequence for the heparin and heparan sulfate degradation pathway of F. heparinum and apply these enzymes in tandem toward the exo-sequencing of heparin-derived oligosaccharides.  相似文献   

10.
受体是病毒宿主嗜性和致病机制的主要决定因素.硫酸乙酰肝素(HS)是一种多聚阴离子碳水化合物,广泛存在于真核细胞的细胞膜和细胞基质.HS是许多病毒在细胞膜上的特异受体或辅助受体.目前发现口蹄疫病毒可利用HS和整联蛋白(ανβ3、ανβ6、ανβ1、ανβ8)作为病毒受体.口蹄疫病毒可能在不同的感染阶段利用不同类型的受体与宿主细胞相互作用中.研究病毒受体的结构和功能对理解病毒与宿主细胞的关系具有重要意义.本文主要论述了HS的生物学特性及其与口蹄疫病毒感染的关系.  相似文献   

11.
受体是病毒宿主嗜性和致病机制的主要决定因素。硫酸乙酰肝素(HS)是一种多聚阴离子碳水化合物, 广泛存在于真核细胞的细胞膜和细胞基质。HS是许多病毒在细胞膜上的特异受体或辅助受体。目前发现口蹄疫病毒可利用HS和整联蛋白(αvβ3、αvβ6、αvβ1、αvβ8)作为病毒受体。口蹄疫病毒可能在不同的感染阶段利用不同类型的受体与宿主细胞相互作用。研究病毒受体的结构和功能对理解病毒与宿主细胞的关系具有重要意义。本文主要论述了HS的生物学特性及其与口蹄疫病毒感染的关系。  相似文献   

12.
硫酸肝素存在于细胞膜表面、基底膜及细胞外基质,是一种高度硫酸化的、带负电荷的多糖结构。研究表明辛德毕斯病毒等甲病毒可通过与细胞表面的硫酸肝素结合进入宿主细胞,完成对细胞的感染。提示细胞表面的硫酸肝素是甲病毒感染细胞的受体或共受体。  相似文献   

13.
Chondroitin sulfate and heparan sulfate proteoglycans are major components of the cell surface and extracellular matrix in the brain. Both chondroitin sulfate and heparan sulfate are unbranched highly sulfated polysaccharides composed of repeating disaccharide units of glucuronic acid and N-acetylgalactosamine, and glucuronic acid and N-acetylglucosamine, respectively. During their biosynthesis in the Golgi apparatus, these glycosaminoglycans are highly modified by sulfation and C5 epimerization of glucuronic acid, leading to diverse heterogeneity in structure. Their structures are strictly regulated in a cell type-specific manner during development partly by the expression control of various glycosaminoglycan-modifying enzymes. It has been considered that specific combinations of glycosaminoglycan-modifying enzymes generate specific functional microdomains in the glycosaminoglycan chains, which bind selectively with various growth factors, morphogens, axon guidance molecules and extracellular matrix proteins. Recent studies have begun to reveal that the molecular interactions mediated by such glycosaminoglycan microdomains play critical roles in the various signaling pathways essential for the development of the brain.  相似文献   

14.
Heparan sulfate proteoglycans regulate various physiological and developmental processes through interactions with a number of protein ligands. Heparan sulfate (HS)-ligand binding depends on the amount and patterns of sulfate groups on HS, which are controlled by various HS sulfotransferases in the Golgi apparatus as well as extracellular 6-O-endosulfatases called “Sulfs.” Sulfs are a family of secreted molecules that specifically remove 6-O-sulfate groups within the highly sulfated regions on HS. Vertebrate Sulfs promote Wnt signaling, whereas the only Drosophila homologue of Sulfs, Sulf1, negatively regulates Wingless (Wg) signaling. To understand the molecular mechanism for the negative regulation of Wg signaling by Sulf1, we studied the effects of Sulf1 on HS-Wg interaction and Wg stability. Sulf1 overexpression strongly inhibited the binding of Wg to Dally, a potential target heparan sulfate proteoglycan of Sulf1. This effect of Drosophila Sulf1 on the HS-Wg interaction is similar to that of vertebrate Sulfs. Using in vitro, in vivo, and ex vivo systems, we show that Sulf1 reduces extracellular Wg protein levels, at least partly by facilitating Wg degradation. In addition, expression of human Sulf1 in the Drosophila wing disc lowers the levels of extracellular Wg protein, as observed for Drosophila Sulf1. Our study demonstrates that vertebrate and Drosophila Sulfs have an intrinsically similar activity and that the function of Sulfs in the fate of Wnt/Wg ligands is context-dependent.  相似文献   

15.
Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease.  相似文献   

16.
Heparan sulfate (HS) is a structurally complex polysaccharide that interacts with a broad spectrum of extracellular effector ligands and thereby is thought to regulate a diverse array of biologic processes. The specificity of HS-ligand interactions is determined by the arrangement of sulfate groups on HS, which creates distinct binding motifs. Biologically important HS motifs are expected to exhibit regulated expression, yet there is a profound lack of tools to identify such motifs; consequently, little is known of their structures and functions. We have identified a novel phage display-derived antibody (NS4F5) that recognizes a highly regulated HS motif (HSNS4F5), which we have rigorously identified as (GlcNS6S-IdoA2S)3. HSNS4F5 exhibits a restricted expression in healthy adult tissues. Blocking HSNS4F5 on cells in culture resulted in reduced proliferation and enhanced sensitivity to apoptosis. HSNS4F5 is up-regulated in tumor endothelial cells, consistent with a role in endothelial cell activation. Indeed, TNF-α stimulated endothelial expression of HSNS4F5, which contributed to leukocyte adhesion. In a mouse model of severe systemic amyloid protein A amyloidosis, HSNS4F5 was expressed within amyloid deposits, which were successfully detected by microSPECT imaging using NS4F5 as a molecularly targeted probe. Combined, our results demonstrate that NS4F5 is a powerful tool for elucidating the biological function of HSNS4F5 and can be exploited as a probe to detect novel polysaccharide biomarkers of disease processes.  相似文献   

17.
Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has not been carried out in a detailed way using high-resolution microscopy. We have begun this process, using well-known markers for the various Golgi compartments, coupled with the use of characterized antibodies and cDNA expression. Laser scanning confocal microscopy coupled with line scanning provides high-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all the enzymes are clustered in a multimolecular complex or are distributed through the various compartments of the Golgi apparatus.  相似文献   

18.

Background

The antithrombin–heparin/heparan sulfate (H/HS) and thrombin–H/HS interactions are recognized as prototypic specific and non-specific glycosaminoglycan (GAG)–protein interactions, respectively. The fundamental structural basis for the origin of specificity, or lack thereof, in these interactions remains unclear. The availability of multiple co-crystal structures facilitates a structural analysis that challenges the long-held belief that the GAG binding sites in antithrombin and thrombin are essentially similar with high solvent exposure and shallow surface characteristics.

Methodology

Analyses of solvent accessibility and exposed surface areas, gyrational mobility, symmetry, cavity shape/size, conserved water molecules and crystallographic parameters were performed for 12 X-ray structures, which include 12 thrombin and 16 antithrombin chains. Novel calculations are described for gyrational mobility and prediction of water loci and conservation.

Results

The solvent accessibilities and gyrational mobilities of arginines and lysines in the binding sites of the two proteins reveal sharp contrasts. The distribution of positive charges shows considerable asymmetry in antithrombin, but substantial symmetry for thrombin. Cavity analyses suggest the presence of a reasonably sized bifurcated cavity in antithrombin that facilitates a firm ‘hand-shake’ with H/HS, but with thrombin, a weaker ‘high-five’. Tightly bound water molecules were predicted to be localized in the pentasaccharide binding pocket of antithrombin, but absent in thrombin. Together, these differences in the binding sites explain the major H/HS recognition characteristics of the two prototypic proteins, thus affording an explanation of the specificity of binding. This provides a foundation for understanding specificity of interaction at an atomic level, which will greatly aid the design of natural or synthetic H/HS sequences that target proteins in a specific manner.  相似文献   

19.
多胺与细胞的增殖和分化密切相关。二氟甲基鸟氨酸是细胞内多胺合成的抑制剂常,作为化疗药物用于肿瘤的治疗,但其效果有时不明显,因此多采用和其他化疗药物联合应用的方案。外源性多胺的摄取依赖细胞表面的硫酸乙酰肝素,硫酸乙酰肝素可以与多种生长因子、细胞因子及化学因子结合而激活细胞的信号传递,促进细胞的增殖和血管生成。联合应用多胺合成抑制剂和硫酸乙酰肝素抑制剂对肿瘤的治疗具有良好的效果。  相似文献   

20.
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号