首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.  相似文献   

2.

Background

Under oxidative stress cytoplasmic aminoacyl-tRNA synthetase (aaRSs) substrate specificity can be compromised, leading to tRNA mischarging and mistranslation of the proteome. Whether similar processes occur in mitochondria, which are major cellular sources of reactive oxygen species (ROS), is unknown. However, relaxed substrate specificity in yeast mitochondrial phenylalanyl-tRNA synthetase (ScmitPheRS) has been reported to increase tRNA mischarging and blocks mitochondrial biogenesis.

Methods

Non-reducing denaturing PAGE, cysteine reactivity studies, MALDI-TOF mass spectrometry, enzyme assay, western blot, growth assay, circular dichroism, dynamic light scattering and fluorescence spectroscopy were used to study the effect of oxidative stress on ScmitPheRS activity.

Results

ScmitPheRS is reversibly inactivated under oxidative stress. The targets for oxidative inactivation are two conserved cysteine residues resulting in reversible intra-molecular disulfide bridge formation. Replacement of either conserved cysteine residue increased viability during growth under oxidative stress.

Conclusion

Formation of intra-molecular disulfide bridge under oxidative stress hinders the tRNAPhe binding of the enzyme, thus inactivating ScmitPheRS reversibly.

General significance

The ScmitPheRS activity is compromised under oxidative stress due to formation of intra-molecular disulfide bridge. The sensitivity of ScmitPheRS to oxidation may provide a protective mechanism against error-prone translation under oxidative stress.  相似文献   

3.
Heat shock (45 degrees C) and the effect of oxidants (H2O2) resulted in a decrease of the respiratory activity of yeast cells and their survival rate. Increased resistance to stress effects after mild heat treatment (37 degrees C) or treatment with a nonlethal dose of oxidants (0.5 mM H2O2 for 60 min) was accompanied by appearance of an alternative (cyanide-resistant) oxidative pathway in the mitochondria, which promotes survival due to retention of the capacity for ATP synthesis in the first coupling point at the level of endogenous NADH dehydrogenase. The alternative oxidative pathway is more resistant to the effect of stressors that disrupt electron transfer in the cytochrome site of the respiratory chain.  相似文献   

4.
Heat shock (45°C) and the effect of oxidants (H2O2) resulted in a decrease of the respiratory activity of yeast cells and their survival rate. Increased resistance to stress effects after mild heat treatment (37°C) or treatment with a nonlethal dose of oxidants (0.5 mM H2O2) for 60 min) was accompanied by appearance of an alternative (cyanide-resistant) oxidative pathway in the mitochondria, which promotes survival due to retention of the capacity for ATP synthesis in the first coupling point at the level of endogenous NADH dehydrogenase. The alternative oxidative pathway is more resistant to the effect of stressors that disrupt electron transfer in the cytochrome site of the respiratory chain.  相似文献   

5.
Eukaryotic cells have developed mechanisms to rapidly respond towards the environment by changing the expression of a series of genes. There is increasing evidence that reactive oxygen species (ROS), besides causing damage, may also fulfill an important role as second messengers involved in signal transduction. Recently, we have demonstrated that deletion of SOD1 is beneficial for the acquisition of tolerance towards heat and ethanol stresses. The present report demonstrates that a sod1 mutant was the only one capable of acquiring tolerance against a subsequent stress produced by menadione, although this mutant strain had exhibited high sensitivity to oxidative stress. By measuring the level of intracellular oxidation, lipid peroxidation as well as glutathione metabolism, we have shown that in the SOD1-deleted strain, an unbalance occurs in the cell redox status. These results indicated that the capacity of acquiring tolerance to oxidative stress is related to a signal given by one or all of the above factors.  相似文献   

6.
Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H(2) O(2) ) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress.  相似文献   

7.
Redox control and oxidative stress in yeast cells   总被引:1,自引:0,他引:1  
  相似文献   

8.
Tolerance of the yeast Yarrowia lipolytica to oxidative stress   总被引:1,自引:0,他引:1  
The adaptive response of the yeast Yarrowia lipolytica to the oxidative stress induced by the oxidants hydrogen peroxide, menadione, and juglone has been studied. H2O2, menadione, and juglone completely inhibited yeast growth at concentrations higher than 120, 0.5, and 0.03 mM, respectively. The stationary-phase yeast cells were found to be more resistant to the oxidants than the exponential-phase cells. The 60-min pre-treatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.3 mM), menadione (0.05 mM), and juglone (0.005 mM) made the cells more resistant to high concentrations of these oxidants. The adaptation of yeast cells to H2O2, menadione, and juglone was associated with an increase in the activity of cellular catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase, the main enzymes involved in cell defense against oxidative stress.  相似文献   

9.
Friedreich ataxia (FRDA) is a common form of ataxia caused by decreased expression of the mitochondrial protein frataxin. Oxidative damage of mitochondria is thought to play a key role in the pathogenesis of the disease. Therefore, a possible therapeutic strategy should be directed to an antioxidant protection against mitochondrial damage. Indeed, treatment of FRDA patients with the antioxidant idebenone has been shown to improve neurological functions. The yeast frataxin knock-out model of the disease shows mitochondrial iron accumulation, iron-sulfur cluster defects and high sensitivity to oxidative stress. By flow cytometry analysis we studied reactive oxygen species (ROS) production of yeast frataxin mutant cells treated with two antioxidants, N-acetyl-L-cysteine and a mitochondrially-targeted analog of vitamin E, confirming that mitochondria are the main site of ROS production in this model. Furthermore we found a significant reduction of ROS production and a decrease in the mitochondrial mass in mutant cells treated with rapamycin, an inhibitor of TOR kinases, most likely due to autophagy of damaged mitochondria.  相似文献   

10.
The adaptive response of the yeast Yarrowia lipolytica to the oxidative stress induced by the oxidants hydrogen peroxide, menadione, and juglone has been studied. H2O2, menadione, and juglone completely inhibited yeast growth at concentrations higher than 120, 0.5, and 0.03 mM, respectively. The stationary-phase yeast cells were found to be more resistant to the oxidants than the exponential-phase cells. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.3 mM), menadione (0.05 mM), and juglone (0.005 mM) made the cells more resistant to high concentrations of these oxidants. The adaptation of yeast cells to H2O2, menadione, and juglone was associated with an increase in the activity of cellular catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase, the main enzymes involved in cell defense against oxidative stress.  相似文献   

11.
12.
Eukaryotic halotolerant microorganisms are important as model organisms to understand the general mechanisms of resistance to environmental salinity. The ability of the extremely halotolerant black yeast Hortaea werneckii to combat oxidative stress was addressed, using hydrogen peroxide to generate the reactive oxygen species. Increasing environmental salinity was found to have no effect on its high ability to degrade hydrogen peroxide but resulted in a decrease in viability in response to externally added hydrogen peroxide, suggesting that the latter property determines the upper limit of the salt tolerance of H. werneckii. A refinement of the model of adaptation of H. werneckii to high-salinity environments is proposed.  相似文献   

13.
Coprinellus congregatus secreted a laccase isozyme when the culture was transferred to an acidic liquid medium (pH 4.1). The laccase cDNA gene (clac2) was used as a probe for cloning of the genomic laccase gene (lac2) including the promoter (Plac2). The open reading frame (ORF) of lac2 had 526 deduced amino acids and four conserved copper binding domains as other fungal laccases. Recombinant plasmid (pRSlac2p-cDNA) of lac2 cDNA with its own promoter was transformed in Saccharomyces cerevisiae. Expression of the transformed lac2 gene was induced by oxidative stress (H2O2) in yeast and the survival rate of the transformed yeast strain was greatly increased when compared with that of the control strain transformed with pRS316 yeast vector.  相似文献   

14.
The assembly of ribosomes in yeast   总被引:20,自引:0,他引:20  
  相似文献   

15.
16.
Since the double Δgrx1Δgrx2 mutant is hypersensitive to selenite we decided to evaluate mechanisms underlying this phenomenon and establish the roles of other components of yeast glutaredoxin system, in particular glutaredoxin 5 in the selenite resistance. We found elevation in the intracellular and mitochondrial superoxide production in the Δgrx1Δgrx2 and Δgrx5 mutants after Se(IV) treatment. The last effect was more pronounced for cells lacking the mitochondrial Grx5 protein. We also recorded selenite-induced increase in the peroxide production in all strains tested. Nonfermentable carbon sources, glycerol and ethanol, augmented selenite toxicity. Hypo- and anoxia protected against the harmful effects of Se(VI). Augmentation of the intracellular levels of two endogenous antioxidants, erythroascorbic acid and glutathione confers resistance to selenite. We recorded a strain-unspecific, selenite-mediated decrease in the level of acid-soluble thiols. Collectively, our data demonstrate that hypersensitivity to the Δgrx1Δgrx2 and Δgrx5 disruptants to selenite is mediated by altered intracellular redox equilibrium.  相似文献   

17.
The accessibility of yeast 5 S RNA to modification by diethyl pyrocarbonate was compared in the free 5 S RNA molecule, 60 S subunits and whole ribosomes. All the reactive sites in the free RNA were eliminated or suppressed in ribosomes but two sites. A51 and A64, remained accessible and a slight reactivity was observed at four new sites (G30, G49, G52 and A72). Nucleotide sequences that have been implicated in initiator transfer RNA binding or subunit interactions are not accessible.  相似文献   

18.
19.
The function of mutations rdn1A, rdn1T, and rdn2 in 18S rRNA of Saccharomyces cerevisiae is investigated. The mutations correspond to substitutions C1054A, C1054U in helix 34, and G517A in helix 18 of 16S rRNA in Escherichia coli, respectively, in which the first and third mutations caused nonsense suppression, while C1054U caused no suppression. In yeast, rdn1A caused phenotypic suppression at nonsense codons, whereas rdn1T and rdn2 caused antisuppression. We provide in vitro evidence that, in addition, rdn1A decreases translational accuracy at sense codons as well, by a factor of 8, accompanied by extreme sensitivity to paromomycin, compatible with its error-prone character. Mutations rdn1T andrdn2 exhibit hyperaccuracy and paromomycin resistance. Thus, mutations in conserved rRNA regions may affect the same functions in the various species but in opposite directions. Mutation rdn1A, but not rdn1T or rdn2, affected also the catalytic activity of the ribosome, a 60S subunit activity. The rate of peptide bond formation was reduced to half its normal value, indicating a communication between the two subunits. Moreover, error-prone mutation rdn1A was less susceptible to oxidative modifications than wild type, indicated by decreased lipid peroxidation and nonprotein/protein disulfides, as well as by increased protein thiols. In contrast, hyperaccurate mutations rdn1T and rdn2 displayed increased oxidative stress. Our results suggest that the cells may consume more energy to achieve hyperaccuracy leading to increased oxidative modifications.  相似文献   

20.
Summary

Glutathione (GSH) is an abundant and ubiquitous low-molecular-mass thiol with proposed roles in many cellular processes including amino acid transport, synthesis of proteins and nucleic acids, modulation of enzyme activity and metabolism of xenobiotics, carcinogens and reactive oxygen species. This review describes recent findings in the lower eukaryote Saccharomyces cerevisiae that are leading to a better understanding of the role of this peptide in eukaryotic cell metabolism. In particular, two gene products involved in maintaining the levels of reduced GSH have been studied; namely, GSH1 encoding γ-glutamylcysteine synthetase, the first step in the biosynthesis of GSH, and glutathione reductase, which recycles glutathione to its reduced form. These studies indicate that GSH is an essential metabolite in yeast, and that it is required for protection against oxidative stress produced by mitochondrial metabolism and exogenous reactive oxygen species. These findings are discussed in the light of analogous observations made in higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号