首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The preparation and characterization of a Ca2+-sensitive actomyosin from chicken gizzard is described. The pH curve of the Mg2+ ATPase activity of the actomyosin was dominated by the activity of the myosin component, and this gave rise to the acid and alkaline optima. Skeletal muscle myosin showed a similar curve. Both the activation of myosin ATPase by actin, and the Ca2+ sensitivity were confined to the neutral pH region. The subunit composition of the Ca2+-sensitive actomyosin was interesting in that no components corresponding to skeletal muscle troponin were obvious. It is suggested that the activity of gizzard actomyosin is regulated by a protein on the thin filaments with a subunit weight of ~130,000.  相似文献   

2.
The intracellular Ca2+ content of nontransformed Balb/c3T3 cells is two to three times higher than that of a spontaneously transformed derivative. Depriving either cell type of extracellular Mg2+ causes a 2- to 3-fold increase in their Ca2+ content over a 24-hr period. Restoring Mg2+ to the medium decreases the Ca2+ content of the cells to their original values in about the same time. The increase in Ca2+ content is not blocked by cycloheximide suggesting that normal rates of protein synthesis are not required to produce this effect. Mg2+ deprivation also decreases the initial rate of Ca2+ efflux from the transformed cells and increases the size of the slowly exchanging fraction of Ca2+ to the levels found in the nontransformed cells. Since Mg2+ deprivation normalizes the appearance and growth behavior of the transformed cells, the possible intermediary role of Ca2+ in this normalization was studied. Large changes in extracellular Ca2+ produced large changes in the Ca2+ content of the transformed cells with little change in appearance or thymidine incorporation rate. Ca2+ deprivation did inhibit thymidine incorporation in early passage nontransformed cells; however with repeated passage, this effect decreased, as did the Ca2+ content of these cells. The possible role of Mg2+ in regulating cellular Ca2+ content and distribution is discussed, as is the relation of Ca2+ content and distribution to the development of the transformed state.  相似文献   

3.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

4.
Filament assemblies of myosin molecules purified from scallop adductor muscles were stabilized by Ca2+ in the presence of ATP or ADP. Electron micrographs showed that the tail part of monomeric myosin molecules was folded in the absence of Ca2+, but was extended in the presence of Ca2+ at physiological ionic strength.  相似文献   

5.
Ca2(+)-sensitive K+ channel in aortic smooth muscle of rats   总被引:2,自引:0,他引:2  
We measured K+ channel activity in inside-out patches of cell membrane from aortic vascular smooth muscle cultured (Passages 1-3) from Wistar, Wistar-Kyoto, and spontaneously hypertensive rats (SHR). With [Ca2+]i between 25 and 100 nm and 150 mm K+ on both sides of the membrane, the conductance of this channel was 55 +/- 7 pS (slope of current-voltage curve through 0 mV) and the current was outwardly rectified. There was no difference in single-channel conductance among the three rat strains. Increasing negative holding voltages or increasing [Ca2+]i, increased the probability of this type channel being open (Npo; P less than 0.01); SHR had a larger NPo (P less than 0.01). Compared with cells from Wistar and Wistar-Kyoto, cells from SHR also had the longest mean open time. The increased NPo and mean open time we observed in this K+ channel of cells from SHR could contribute, at least in part, to the increased membrane K+ permeability, reported previously.  相似文献   

6.
Amyloid diseases occur when native or mutant polypeptides misfold and aggregate to form deposits in the extracellular space. There are at least 20 proteins associated with amyloid diseases, including the well-known amyloid-beta peptide that is the causative agent for Alzheimer's disease (AD). This review describes familial amyloidosis of Finnish type (FAF), an amyloid disease caused by mutations in plasma gelsolin, a secreted protein that contains multiple Ca2+-binding domains. The FAF mutations result in a loss of the Ca2+-binding site in domain 2 of plasma gelsolin. The resulting decreased stability gives rise to susceptibility to the protease furin in the Golgi. Furin cleavage generates a secreted fragment that undergoes a second proteolytic event in the extracellular matrix to produce a peptide that self-assembles into amyloid plaques. Thus, Ca2+ binding in native plasma gelsolin protects against amyloid disease.  相似文献   

7.
Gelsolin is a Ca(2+)-regulated actin-modulating protein found in a variety of cellular cytoplasm and also in blood plasma. Affinity separation of human plasma gelsolin was successfully accomplished by eluting the protein with a low concentration of nucleoside polyphosphate from immobilized Cibacron Blue F3GA (1, 2). This finding was followed by the demonstration that the protein had one class of ATP binding site with Kd = 2.8 x 10(-7) M, which saturated at an ATP/gelsolin ratio of 0.6 in the absence of Ca2+ (3). To obtain further information on the nucleotide binding properties of gelsolin, binding studies were done in the presence of EGTA with GTP, ADP, and GDP by equilibrium dialysis. Incubation of plasma gelsolin with GTP resulted in binding of 0.6 mol of GTP per mol of protein with a dissociation constant of 1.8 x 10(-6) M, indicating that ATP binds to gelsolin with higher affinity than GTP. Neither ADP nor GDP at up to 100 microM appreciably bound to gelsolin at a physiological salt concentration. Then, the effects of divalent metal ions on the ATP binding to plasma gelsolin were examined. Gelsolin bound to ATP with Kd = 2.4 x 10(-6) M in a solution containing 2 mM MgCl2, whereas micromolar free Ca2+ concentrations inhibited ATP binding. Furthermore, addition of Ca2+ rapidly reversed the preformed nucleotide binding to gelsolin, suggesting that Ca2+ binding to gelsolin leads to a conformational change which disrupts a nucleotide binding fold in the protein molecule.  相似文献   

8.
Mills E  Pham E  Truong K 《Cell calcium》2010,48(4):195-201
The Rho proteins are important regulators of cell morphology, and the prototypical protein RhoA is known to regulate contraction, blebbing and bleb retraction. We have identified and experimentally confirmed that RhoA has a binding site for calmodulin, a ubiquitous transducer of the Ca(2+) second messenger. Using structural modeling, a fusion protein was designed wherein RhoA activity was controlled by Ca(2+) via calmodulin. Living cells transfected with this synthetic protein underwent Ca(2+) sensitive and calmodulin-dependent bleb retraction within minutes. Further, the modularity of Ca(2+) signaling was exploited to induce bleb retraction in response to blue light (using channelrhodopsin-2) or exogenous chemicals (with acetylcholine receptor), showing input signal versatility. The widespread use of Ca(2+) signaling in nature suggests that fully exploring its signaling potential may allow powerful applications to other synthetic biological systems.  相似文献   

9.
C W Smith  S B Marston 《FEBS letters》1985,184(1):115-119
The Ca2+-sensitive thin filaments of aorta smooth muscle have been, disassembled into their constituent proteins, actin, tropomyosin and a 120-kDa protein. The 120-kDa protein bound to aorta actin-tropomyosin and inhibited its ability to activate myosin MgATPase. This inhibition correlated with the binding of one 120-kDa protein molecule per 29 actin monomers. Upon the addition of calmodulin to the actin-tropomyosin-120-kDa protein complex, the inhibition was relieved in 10(-4) M Ca2+ but not 10(-9) M Ca2+. The full release of inhibition was not accompanied by a full release of 120-kDa protein binding to actin-tropomyosin. A fully active, Ca2+-sensitive aorta thin filament has thus been reconstituted from just four components: actin, tropomyosin, 120-kDa protein and calmodulin.  相似文献   

10.
The concept of Ca2+ regulation, first discovered and developed in muscle research, is historically surveyed. Ca2+ regulation mechanisms in actomyosin-dependent contractile processes are compared, emphasis being placed on the great diversity. The mode of action of Ca2+ is discussed with the examples of troponin and calmodulin, the most differentiated and conservative Ca2+-receptor proteins, respectively.  相似文献   

11.
In nonexcitable cells, we had previously established that Ca(2+)-sensitive adenylyl cyclases, whether expressed endogenously or heterologously, were regulated exclusively by capacitative Ca(2+) entry (Fagan, K. A., Mahey, R. and Cooper, D. M. F. (1996) J. Biol. Chem. 271, 12438-12444; Fagan, K. A., Mons, N., and Cooper, D. M. F. (1998) J. Biol. Chem. 273, 9297-9305). Relatively little is known about how these enzymes are regulated by Ca(2+) in excitable cells, where they predominate. Furthermore, no effort has been made to determine whether the prominent voltage-gated Ca(2+) entry, which typifies excitable cells, overwhelms the effect of any capacitative Ca(2+) entry that may occur. In the present study, we placed the Ca(2+)-stimulable, adenylyl cyclase type VIII in an adenovirus vector to optimize its expression in the pituitary-derived GH(4)C(1) cell line. In these cells, a modest degree of capacitative Ca(2+) entry could be discerned in the face of a dramatic voltage-gated Ca(2+) entry. Nevertheless, both modes of Ca(2+) entry were equally efficacious at stimulating adenylyl cyclase. A striking release of Ca(2+) from intracellular stores, triggered either by ionophore or thyrotrophin-releasing hormone, was incapable of stimulating the adenylyl cyclase. It thus appears as though the intimate colocalization of adenylyl cyclase with capacitative Ca(2+) entry channels is an intrinsic property of these molecules, regardless of whether they are expressed in excitable or nonexcitable cells.  相似文献   

12.
We have previously found that treatment of quiescent mammalian fibroblast cells with several mitogenic factors activates in common a Ca2+-sensitive serine/threonine-specific protein kinase activity toward microtubule-associated protein 2 (MAP2) [Hoshi, M., Nishida, E. and Sakai, H. (1988) J. Biol. Chem. 263, 5396-5401]. Here, we characterized the mitogen-activated MAP2 kinase activity in rat 3Y1 cells. The activated kinase activity was detected in the cytosolic fraction but not in the membrane fraction. The inhibitory effect of Ca2+ on the kinase activity was reversible. Kinetic analyses revealed that the apparent Km values of the kinase activity for MAP2 and ATP were 1.6 microM and 30 microM, respectively. Free Ca2+ at 4 microM decreased apparent Vmax values for MAP2 and ATP without changing the apparent Km values. The MAP2 kinase had an apparent molecular mass of about 40 kDa as determined by gel filtration and by sucrose density gradient centrifugation. Myelin basic protein as well as MAP2 could serve as good substrates for this kinase, but 40S ribosomal protein S6, casein, histone, phosphorylase b, protamine, tubulin, actin and tau could not. These properties of the enzyme indicate that the Ca2+-sensitive MAP2 kinase may be a previously unidentified enzyme. Down-regulation of protein kinase C by prolonged phorbol ester treatment abolished the MAP2 kinase activation by phorbol ester, but did not prevent the MAP2 kinase activation by epidermal growth factor (EGF) or fresh serum. This suggests that the Ca2+-sensitive MAP2 kinase could be activated through protein-kinase-C-dependent and -independent pathways. Activation of the MAP2 kinase occurred shortly after the addition of EGF or phorbol ester even in the presence of protein synthesis inhibitors (cycloheximide, puromycin and emetin). Moreover, treatment of the EGF- or phorbol-ester-activated MAP2 kinase with acid phosphatase inactivated the kinase activity. Thus, the MAP2 kinase may be activated through phosphorylation.  相似文献   

13.
Ca2+-induced Ca2+ release (CICR) plays an important role in the generation of cytosolic Ca2+ signals in many cell types. However, it is inherently difficult to distinguish experimentally between the contributions of messenger-induced Ca2+ release and CICR. We have directly tested the CICR sensitivity of different regions of intact pancreatic acinar cells using local uncaging of caged Ca2+. In the apical region, local uncaging of Ca2+ was able to trigger a CICR wave, which propagated toward the base. CICR could not be triggered in the basal region, despite the known presence of ryanodine receptors. The triggering of CICR from the apical region was inhibited by a pharmacological block of ryanodine or inositol trisphosphate receptors, indicating that global signals require coordinated Ca2+ release. Subthreshold agonist stimulation increased the probability of triggering CICR by apical uncaging, and uncaging-induced CICR could activate long-lasting Ca2+ oscillations. However, with subthreshold stimulation, CICR could still not be initiated in the basal region. CICR is the major process responsible for global Ca2+ transients, and intracellular variations in sensitivity to CICR predetermine the activation pattern of Ca2+ waves.  相似文献   

14.
15.
The mathematical model of smooth muscles contractile activity Ca(2+)-dependent control has been proposed on the base of Ca ions trans-sarcomal exchange biochemical mechanisms interpretation in myocytes. While analysing the model the conclusion should be made that kinetic parameters changes (in relation to Ca ions) Mg2+, ATP-dependent calcium pump of plasma membrane--Michaelis constant Km and transport process maximal velocity Vmax-render the effect on the character of the intracellular calcium transients and profile of full mechanokinetic curve. As well one more conclusion has been made that plasma membrane Mg2+, ATP-dependent calcium pump, which kinetic parameters under the physiologic conditions are subjected to modulation as the result of metabolic, pharmacologic and physico-chemical factors fulfills the essential role in supplying Ca(2+)-dependent control of the smooth muscles contractile response full cycle.  相似文献   

16.
Mitochondria not only facilitate chemiosmotic energy transduction, but also are excitable organelles that are important participants in intracellular Ca2+ signaling and are obligate participants in the active cell death cascade known as apoptosis. Underlying these functions is the cyclosporin A (CSA)-sensitive mitochondrial permeability transition pore (MTP), which can open transiently in a low conductance mode (MTPL) to relieve excess Ca2+, and irreversibly during the initiation of apoptosis. Here we image for the first time CSA- and Ca2+-sensitive cyclical mitochondrial depolarizations in cultures of the SH-SY5Y human neuroblastoma cell. In addition, we show that mitochondrial transmembrane potential (DeltaPsi) increases in response to CSA, indicating a baseline channel activity. Moreover, networks of mitochondria are shown to behave as an excitable system that may use Ca2+ as a diffusible messenger to recruit neighboring mitochondria to depolarize. We propose that these depolarizations represent MTPL activity. Our data further reinforce the notion that mitochondria are excitable organelles and suggest coordinated activation of MTPL.  相似文献   

17.
Gelsolin is activated by Ca(2+) to sever actin filaments. Ca(2+) regulation is conferred on the N-terminal half by the C-terminal half. This paper seeks to understand how Ca(2+) regulates gelsolin by testing the "tail helix latch hypothesis," which is based on the structural data showing that gelsolin has a C-terminal tail helix that contacts the N-terminal half in the absence of Ca(2+). Ca(2+) activation of gelsolin at 37 degrees C occurs in three steps, with apparent K(d) for Ca(2+) of 0.1, 0.3, and 6.4 x 10(-6) m. Tail helix truncation decreases the apparent Ca(2+) requirement for severing to 10(-7) m and eliminates the conformational change observed at 10(-6) m Ca(2+). The large decrease in Ca(2+) requirement for severing is not due to a change in Ca(2+) binding nor to Ca(2+)-independent activation of the C-terminal half per se. Thus, the tail helix latch is primarily responsible for transmitting micromolar Ca(2+) information from the gelsolin C-terminal half to the N-terminal half. Occupation of submicromolar Ca(2+)-binding sites primes gelsolin for severing, but gelsolin cannot sever because the tail latch is still engaged. Unlatching the tail helix by 10(-6) m Ca(2+) releases the final constraint to initiate the severing cascade.  相似文献   

18.
EDTA-binding and acylation of the Ca2+-sensitive photoprotein aequorin   总被引:9,自引:0,他引:9  
The rate of phosphorylation and concomitant inactivation of purified pig heart muscle pyruvate dehydrogenase complex by intrinsic kinase (EC 2.7.1.99) is markedly accelerated by the addition of coenzyme A to the incubation medium, showing a half-maximum effect at 1.8 μM. The pantetheine moiety is the effective part of the coenzyme A molecule. The free thiol group is prerequisite for the stimulatory action, acetyl-CoA, benzoyl-CoA or CoAS-SCoA being ineffectual. The thiol's specificity is evidenced by showing that dithiothreitol, 2-mercaptoethanol or glutathione up to 5 mM failed to replace coenzyme A. The possibility is considered that coenzyme A might act as a physiological modifier of pyruvate dehydrogenase kinase activity.  相似文献   

19.
Influenza virus added to Lettré cells at pH 5.3 induces a permeability change similar to that elicited by Sendal virus at pH 7.4: K+ and Na+ equilibrate across the plasma membrane and low-molecular-weight phosphorylated compounds leak out of cells, which remain impermeable to trypan blue.  相似文献   

20.
The soy-derived isoflavones genistein and daidzein affect the contractile state of different kinds of smooth muscle. We describe acute effects of genistein and daidzein on contractile force and intracellular Ca2+ concentration ([Ca2+]i) in in situ smooth muscle of rat aorta. Serotonin (5-HT) (2 microM) or a depolarizing high K+ solution produced the contraction of aortic rings, which were immediately relaxed by 20 microM genistein and by 20 microM daidzein. Accordingly, both 5-HT and a high K+ solution increased the [Ca2+]i in in situ smooth muscle cells. Genistein strongly inhibited the [Ca2+]i increase evoked by 5-HT (74.0 +/- 7.3%, n = 11, p < 0.05), and had a smaller effect on high K+ induced [Ca2+]i increase (19.9 +/- 4.0%, n = 7, p < 0.05). The K+ channels blocker tetraethylammonium (TEA) (0.5 mM) diminished genistein effects on 5-HT-induced [Ca2+]i increase. Interestingly, during prolonged application of 5-HT, the [Ca2+]i oscillated and a short (90 s) preincubation with genistein (20 microM) significantly diminished the frequency of the oscillations. This effect was totally abolished by TEA. In conclusion, in rat aortic smooth muscle, genistein is capable of diminishing the increase in [Ca2+]i and in force evoked by 5-HT and high K+ solution, and of decreasing the frequency of [Ca2+]i oscillations induced by 5-HT. The short time required by genistein, and the relaxing effect of daidzein suggest that tyrosine kinases inhibition is not involved. The small inhibiting effect of genistein on the [Ca2+]i increase evoked by high K+ and the effect of TEA point to the activation by genistein of calcium-activated K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号