首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Y J Kim  K B Song    S K Rhee 《Journal of bacteriology》1995,177(17):5176-5178
Membrane vesicles prepared from Zymomonas mobilis oxidized NADH exclusively, whereas deamino-NADH was little oxidized. In addition, the respiratory chain-linked NADH oxidase system exhibited only a single apparent Km value of approximately 66 microM for NADH. The NADH oxidase was highly sensitive to the respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide. However, the NADH:quinone oxidoreductase was not sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide and was highly resistant to another respiratory chain inhibitor, rotenone. Electron transfer from NADH to oxygen generated a proton electrochemical gradient (inside positive) in inside-out membrane vesicles. In contrast, electron transfer from NADH to ubiquinone-1 generated no electrochemical gradient. These findings indicate that Z. mobilis possesses only NADH:quinone oxidoreductase lacking the energy coupling site.  相似文献   

2.
Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linked NADH oxidase exhibited an apparent K(m) value of approximately 65 microM for NADH. The maximum activity of the NADH oxidase was obtained at about pH 8.5 in the presence of 0.1 M KCl (or NaCl). Respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited the activity of the NADH oxidase by about 90% at a concentration of 40 microM. Interestingly, rotenone and capsaicin inhibited the activity of the NADH oxidase by about 60% at a concentration of 40 microM and the activity was also highly sensitive to Ag(+).  相似文献   

3.
The aerobic respiratory system of the hydrocarbonoclastic marine bacterium Pseudomonas nautica 617 ends with a single terminal oxidase. It is a heme-containing membranous protein which has been demonstrated only to reduce molecular oxygen to hydrogen peroxide [Denis, M., Arnaud S. & Malatesta, F. (1989) FEBS Lett. 247, 475-479]. The purification of this oxidase was achieved in a single step through by DEAE-Trisacryl chromatography. SDS/PAGE showed the presence of four subunits. The pI was found to be 4.45 and a Mr of 130,000 was determined by gel filtration. The amino acid composition of the purified terminal oxidase has been determined. About 52% of the residues are hydrophobic, strengthening the membranous nature of this bacterial oxidase. Room temperature optical spectra are typical of heme b with a 560-nm band for the reduced form in the alpha range. The prosthetic group is made of two hemes b, one high-spin (S = 5/2, gl = 5.9, g parallel approximately 2.0), the other low-spin (S = 1/2, gz = 2.94, gy = 2.27). No other metal centre was detected by EPR. The two hemes remained unresolved in optical spectra, even at low temperature, and throughout redox titration. They behaved potentiometrically like a one-electron, single redox couple, with Em = 87 +/- 10 mV at pH 7.2 and 293 K. The purified oxidase did not oxidize ferrocytochrome c, but displayed quinol oxidase activity both with the native quinone (2419 nmol O2.min-1.mg protein-1 and commercially available coenzyme (101.74 nmol O2.min-1.mg protein-1). Exposure of the reduced enzyme to CO induced the collapse of alpha and beta bands as occurred during reoxidation. In contrast, NaCN and NaN3 fully inhibited the oxidase activity. Results are discussed with respect to other purified quinol oxidases.  相似文献   

4.
The respiratory O2 consumption in aerobic bacterial cultureshas been modeled from the time profiles of the in vitro activityof the respiratory electron transfer system (ETS), the bacterialprotein and the concentration of the carbon source in the cultures.The model was based on the concept of bisubstrate kinetic controlof the ETS throughout the exponential, steady-state and senescentphases of the cultures. In the exponential phase, the measuredrates of O2 consumption and the in vitro ETS activity were closelycoupled, but in the senescent phase, they were uncoupled. Thein vitro ETS activity remained high even after the culture'scarbon source was exhausted, while the O2 consumption fell tolow levels. Based on the hypothesis that this uncoupling wascaused by limitation of the intracellular ETS substrates (NADHand NADPH), a semi-empirical model incorporating a bisubstrateenzyme kinetics algorithm was formulated and fitted to the observationsof the experiments. The model predicted the rate of O2 consumptionthroughout the different phases of the cultures with an r2 >0.92 (n = 9, P < 0.001) using physiologically realistic Michaelisand dissociation constants. These results suggest that planktonrespiration in the field could be assessed more accurately thanbefore by measuring the intracellular ETS substrates (NADH andNADPH), in addition to ETS activity, in plankton.  相似文献   

5.
6.
7.
【背景】许多研究表明,支原体的NADH氧化酶(NADH oxidase,NOX)不仅在胞浆中发挥生物酶学功能,也存在于细胞膜上发挥黏附宿主细胞功能。【目的】对滑液支原体(Mycoplasma synoviae,MS)的NOX进行酶学活性及亚细胞定位研究,分析其在MS致病过程中的潜在作用。【方法】对MS的NOX蛋白进行原核表达、纯化,然后对重组MSNOX (rMSNOX)的酶学活性及影响酶活的条件进行研究,测定其酶比活力、米氏常数及最大反应速率,接着用MS阳性血清及制备的rMSNOX兔多克隆抗体,分别与rMSNOX蛋白及MS全菌、膜蛋白和胞浆蛋白进行Western blotting反应,鉴定rMSNOX的免疫原性及其在MS中的分布情况。【结果】在大肠杆菌BL21(DE3)中成功表达rMSNOX蛋白,相对分子质量约为53 kD,并获得纯化的rMSNOX蛋白;酶活测定显示rMSNOX蛋白的酶比活力为14.17IU/mg,最适酶促温度为37℃,最适pH为7.5,双倒数法求得rMSNOX的最大反应速率Vmax为21.8μmol/(L·min),米氏常数Km  相似文献   

8.
一株海洋好氧反硝化细菌的鉴定及其好氧反硝化特性   总被引:4,自引:1,他引:4  
【目的】从处理海洋养殖循环水的生物滤器生物膜中分离到1株具有好氧反硝化活性的细菌(菌株2-8),并进一步研究了该菌的分类地位及反硝化特性。【方法】采用16S rRNA基因序列分析对菌株进行初步鉴定,采用好氧培养技术,探讨了碳源种类、起始pH、NaCl浓度、C/N、温度和摇床转速对菌株2-8好氧反硝化活性的影响。【结果】该菌株的16S rRNA基因序列与Pseudomonas segetis FR1439T(AY770691)的相似性最高,达到99.9%,因此初步鉴定菌株2-8属于假单胞菌属(Pseudomonas sp.2-8)。碳源类型和C/N对其好氧反硝化作用的影响最为显著,以柠檬酸钠为唯一碳源,C/N为15时脱氮效率最高,低C/N导致亚硝酸盐的积累;其好氧反硝化的最适温度和pH分别为30℃和7.5;菌株2-8在摇床转速为160r/min下脱氮效果最好;NaCl浓度对其反硝化活性的影响不明显。【结论】在初始硝酸氮浓度为140mg/L,以柠檬酸钠为唯一碳源、C/N为15、pH为7.5、NaCl浓度为30g/L,30℃以及160r/min摇床培养的条件下,菌株2-8在48h内脱氮率可达92%且无亚硝酸盐积累。  相似文献   

9.
The respiratory chain-linked external NADH dehydrogenase has been isolated from Candida utilis in highly purified form. The enzyme is soluble and has a molecular weight of approx. 1.5 · 106. The enzyme contains two moles of FMN per mole of enzyme and is composed of two large subunits of mol. wt. 270 000 and eight smaller subunits of mol. wt. 135 000. Iron and copper are present in the preparations, but appear to be contaminants. The enzyme catalyzes the oxidation of NADH and NADPH at nearly equal rates and reacts readily with 2,6-dichlorophenolindophenol, CoQ6 and CoQ1 derivatives as acceptors. Rotenone (10?5 M) and seconal (10?3 M) do not inhibit enzymatic activity.  相似文献   

10.
《FEBS letters》1986,202(2):327-330
The sodium-transport respiratory chain NADH:quinone reductase of a marine bacterium, Vibrio alginolyti-cus, is composed of three protein subunits, α,β and γ. The β-subunit contains FAD as a prosthetic group and corresponds to NADH dehydrogenase, which catalyses the reduction of ubiquinone to ubisemiquinone. In addition to β, subunits α. and γ are essential for the quinone reductase, which catalyses the reduction of ubiquinone to ubiquinol. The α-subunit contains FMN and the reaction catalysed by subunit α is related to the coupling site of the sodium pump in the quinone reductase.  相似文献   

11.
12.
13.
Three hydrocarbon uptake modes (adherence, emulsification and solubilization) were identified and quantified in cells and supernatants of a mesophilic marine bacterium Pseudomonas nautica strain 617 grown on eicosane. The adherence capacity was related to the enrichment of cells with wax esters and glycolipids. The emulsifying activity was related to the presence of extracellular biosurfactants composed of proteins, carbohydrates and lipids (35:63:2). The intensity of substrate uptake modes was sensitive to temperatures currently found in the original environment of P. nautica (16°C, 20°C and 32°C). When temperature decreased, a significant increase in adherence and emulsifying activity was observed in relation to biochemical changes, whereas solubilizing activity decreased. The marine bacterium was able to degrade 53–59% eicosane at the end of exponential growth after 13, 5 and 3 days incubation at 16°C, 20°C and 32°C respectively.  相似文献   

14.
F. J. Ruzicka  F. L. Crane 《BBA》1971,226(2):221-233
1. Enzymatic reduction of 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone) by NADH can be used in an assay procedure for the NADH dehydrogenase. The reduction of this quinone occurs in the region of the electron transport system between the primary dehydrogenase and the cytochrome system as defined by the almost complete loss of reductase activity following piericidin A treatment.

2. Duroquinone reduction can be distinguished from ubiquinone 2 reduction by the marked inhibition of the former following phospholipase C, poly- -lysine, or chloroquine diphosphate treatment. In addition, duroquinone reduction requires the presence of endogenous ubiquinone 10 specifically whereas ubiquinone 2 reduction does not require the presence of endogenous quinone. These observations are consistent with the nonequivalency of the reduction sites of duroquinone and ubiquinone 2.

3. Duroquinol can be utilized as an electron donor for the energy-linked reduction, of NAD+. Duroquinol reduction of NAD+ is dependent upon the presence of ATP, is inhibited by oligomycin, carbonyl cyanide p-trifluoro methoxyphenylhydrazone and piericidin A, and is not inhibited by antimycin A at levels which inhibit electron transport.

4. Duroquinone reduction as well as ubiquinone 2 reduction are inhibited almost completely by phospholipase A, p-chloromercuribenzoate, o-phenanthroline, and Triton X100 treatments.  相似文献   


15.
Zhang J  Wu P  Hao B  Yu Z 《Bioresource technology》2011,102(21):9866-9869
A strain YZN-001 was isolated from swine manure effluent and was identified as Pseudomonas stutzeri. It can utilise not only nitrate and nitrite, but also ammonium. The strain had the capability to fully remove as much as 275.08 mg L−1 NO3–N and 171.40 mg L−1 NO2–N under aerobic conditions. Furthermore, At 30 °C, the utilization of ammonium is approximately 95% by 18 h with a similar level removed by 72 h and 2 weeks at 10 and 4 °C, respectively. Triplicate sets of tightly sealed serum bottles were used to test the heterotrophic nitrifying ability of P. stutzeri YZN-001. The results showing that 39% of removed NH4+–N was completely oxidised to nitrogen gas by 18 h. Indicating that the strain has heterotrophic nitrification and aerobic denitrification abilities, with the notable ability to remove ammonium at low temperatures, demonstrating a potential using the strain for future application in waste water treatment.  相似文献   

16.
The respiratory chain of a marine Vibrio alginolyticus contains two types of NADH-quinone reductase (NQR): one is an Na(+)-dependent NQR functioning as an Na+ pump (NQR-1) and the other is an Na(+)-independent NQR (NQR-2). NQR-2 was purified about 55-fold from the membrane of mutant Nap-1 which is devoid of NQR-1, and its properties were compared with those of NQR-1. In contrast to NQR-1, the purified NQR-2 does not require any salts for activity and is not inhibited by up to 0.4 M salts. The optimum pH of NQR-2 is between 6.8 and 7.8, which is about 0.7 ph units lower than that of NQR-1. NQR-2 is insensitive to strong inhibitors of NQR-1 such as p-chloromercuribenzoate, Ag+ and 2-heptyl-4-hydroxyquinoline N-oxide. Using inverted membrane vesicles, it was confirmed that NQR-2 has no capacity to generate a membrane potential. NQR-2 reduces menadione and ubiquinone-1 by a two-electron reduction pathway. Since the NADH-reacting FAD-containing beta-subunit of NQR-1 reduces quinones by a one-electron reduction pathway, the mode of quinone reduction is closely related to energy coupling; the formation of semiquinone radicals as an intermediate is likely to be essential to functioning as an ion pump.  相似文献   

17.
Purification and properties of NADH oxidase from Bacillus megaterium   总被引:3,自引:0,他引:3  
NADH oxidase, which catalyzes the oxidation of NADH, with the consumption of a stoichiometric amount of oxygen, to NAD+ and hydrogen peroxide was purified from Bacillus megaterium by 5'-AMP Sepharose affinity chromatography to homogeneity. The enzyme is a dimeric protein containing 1 mol of FAD per mol of subunit, Mr = 52,000. The absorption maxima of the native enzyme (oxidized form) were found at 270, 383, and 450 with a shoulder at 475 nm in 50 mM KPi buffer, pH 7.0. The visible absorption bands at 383 and 450 nm disappeared on the addition of NADH under anaerobic conditions and reappeared upon the introduction of air. Thus, the non-covalently bound FAD functioned as a prosthetic group for the enzyme. We tentatively named this new enzyme NADH oxidase (NADH:oxygen oxidoreductase, hydrogen peroxide forming). This enzyme stereospecifically oxidizes the pro-S hydrogen at C-4 of the pyridine ring of NADH.  相似文献   

18.
19.
Yang X  Ma K 《Journal of bacteriology》2007,189(8):3312-3317
An NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima was purified. The enzyme was very active in catalyzing the reduction of oxygen to hydrogen peroxide with an optimal pH value of 7 at 80 degrees C. The V(max) was 230 +/- 14 mumol/min/mg (k(cat)/K(m) = 548,000 min(-1) mM(-1)), and the K(m) values for NADH and oxygen were 42 +/- 3 and 43 +/- 4 muM, respectively. The NADH oxidase was a heterodimeric flavoprotein with two subunits with molecular masses of 54 kDa and 46 kDa. Its gene sequences were identified, and the enzyme might represent a new type of NADH oxidase in anaerobes. An NADH-dependent peroxidase with a specific activity of 0.1 U/mg was also present in the cell extract of T. maritima.  相似文献   

20.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号