首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have prepared polyclonal antibodies to the cytoplasmic portion of the envelope glycoprotein G of vesicular stomatitis virus (VSV) by using synthetic peptides corresponding to either the 22 or 11 ultimate carboxy-terminal residues of the G as immunogens. When antibodies to the 22 residue peptide are microinjected into monolayer baby hamster kidney cells before or shortly after infection with wild-type VSV, G protein accumulates in large intracellular patches and little G is observed in the Golgi complex or at the cell surface. In contrast, when antibodies to the 11 residue peptide are injected, no such patches are observed and G protein is seen colocalized with the injected antibody at the endoplasmic reticulum, in the Golgi complex, in transport vesicles, and at the plasma membrane. Microinjection of these antibodies does not disturb the pathway or kinetics of G-protein transport. In cells infected with a temperature-sensitive mutant of VSV, 045, the glycoprotein accumulates in the endoplasmic reticulum at 39.8 degrees C, but rapidly moves through the Golgi apparatus and then to the cell surface after a temperature shift-down to 32 degrees C. Using rhodamine-coupled antibodies to the 11 residue peptide, a microscope stage equipped for precise temperature control, and a silicon intensifier target video camera, we can visualize by video light microscopy the synchronized exocytotic transport of the G protein directly in the living cell.  相似文献   

2.
Recent studies using the fungal metabolite brefeldin A (BFA) have provided important insights into the dynamics and the organization of the ER/Golgi membrane system. Here we examined the effect of BFA on the functional integrity of the distal part of the secretory pathway, i.e., transport between trans-Golgi cisternae and the cell surface. To assay export via the constitutive pathway, we followed the movement of vesicular stomatitis virus (VSV) G glycoprotein that had been accumulated in the trans-Golgi network (TGN) by incubation of infected BHK-21 cells at 20 degrees C. Addition of BFA rapidly and reversibly inhibited cell surface transport of G protein. The block to secretion was not due to redistribution of externalized G protein to internal pools. It was also not due to collapse of TGN to the ER, since VSV G protein blocked in treated cells resided in compartments that were distinct from the ER/Golgi system. Similar effects were found with a bulk-flow marker: BFA blocked constitutive secretion of glycosaminoglycan chains that had been synthesized and sulfated in the trans-Golgi cisternae. To examine export via the regulated secretory pathway, we assayed secretion of [35S]SO4 labeled secretogranin II from PC12 cells, a marker that has been used to study secretory granule budding from the TGN (Tooze, S. A., U. Weiss, and W. B. Huttner. 1990. Nature [Lond.]. 347:207-208). BFA potently inhibited secretion of sulfated secretogranin II induced by K+ depolarization. Inhibition was at the level of granule formation, since BFA had no effect on regulated secretion from preformed granules. Taken together, the results suggest that BFA blocks export via both the constitutive and the regulated pathways. In contrast, endocytosis and recycling of VSV G protein were not blocked by BFA, consistent with previous studies that endocytosis is unaffected (Misumi, Y., Y. Misumi, K. Miki, A Takatsuki, G. Tamura, and Y. Ikehara. 1986. J. Biol. Chem. 261:11398-11403). These and earlier results suggest that the exo/endocytic pathway of mammalian cells consist of two similar but distinct endomembrane systems: an ER/Golgi system and a post-Golgi system. BFA prevents forward transport without affecting return traffic in both systems.  相似文献   

3.
Rab 7: an important regulator of late endocytic membrane traffic   总被引:20,自引:5,他引:15       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1435-1452
Rab5 and rab7 proteins belong to a superfamily of small molecular weight GTPases known to be associated with early and late endosomes, respectively. The rab5 protein plays an important regulatory role in early endocytosis, yet the function of rab7 protein was previously uncharacterized. This question was addressed by comparing the kinetics of vesicular stomatitis virus (VSV) G protein internalization in baby hamster kidney cells overexpressing wild-type or dominant negative mutant forms of the rab7 protein (rab7N125I and rab7T22N). Overexpression of wild-type rab7 protein allowed normal transport to late endosomes (mannose 6-phosphate receptor positive), while the rab7N125I mutant caused the VSV G protein to accumulate specifically in early (transferrin receptor positive) endosomes. Horseradish peroxidase and paramyxovirus SV5 hemagglutinin-neuraminidase (HN) were used in quantitative biochemical assays to further demonstrate that rab7 function was not required for early internalization events, but was crucial in downstream degradative events. The characteristic cleavage of SV5 HN in the late endosome distinguishes internalization from transport to later stages of the endocytic pathway. Mutant rab7N125I or rab7T22N proteins had no effect on the internalization of either horseradish peroxidase or SV5 HN protein. In contrast, the mutant proteins markedly inhibited the subsequent cleavage of the SV5 HN protein. Taken together, these data support a key role for rab7, downstream of rab5, in regulating membrane transport leading from early to late endosomes. We compare our findings to those obtained for the yeast homologues Ypt51p, Ypt52p, Ypt53p, and Ypt7p.  相似文献   

4.
A fibroblast mutant cell line lacking the Na+/H+ antiporter was used to study the influence of low cytoplasmic pH on membrane transport in the endocytic and exocytic pathways. After being loaded with protons, the mutant cells were acidified at pH 6.2 to 6.8 for 20 min while the parent cells regulated their pH within 1 min. Cytoplasmic acidification did not affect the level of intracellular ATP or the number of clathrin-coated pits at the cell surface. However, cytosolic acidification below pH 6.8 blocked the uptake of two fluid phase markers, Lucifer Yellow and horseradish peroxidase, as well as the internalization and the recycling of transferrin. When the cytoplasmic pH was reversed to physiological values, both fluid phase endocytosis and receptor-mediated endocytosis resumed with identical kinetics. Low cytoplasmic pH also inhibited the rate of intracellular transport from the Golgi complex to the plasma membrane. This was shown in cells infected by the temperature-sensitive mutant ts 045 of the vesicular stomatitis virus (VSV) using as a marker of transport the mutated viral membrane glycoprotein (VSV-G protein). The VSV-G protein was accumulated in the trans-Golgi network (TGN) by an incubation at 19.5 degrees C and was transported to the cell surface upon shifting the temperature to 31 degrees C. This transport was arrested in acidified cells maintained at low cytosolic pH and resumed during the recovery phase of the cytosolic pH. Electron microscopy performed on epon and cryo-sections of mutant cells acidified below pH 6.8 showed that the VSV-G protein was present in the TGN. These results indicate that acidification of the cytosol to a pH less than 6.8 inhibits reversibly membrane transport in both endocytic and exocytic pathways. In all likelihood, the clathrin and nonclathrin coated vesicles that are involved in endo- and exocytosis cannot pinch off from the cell surface or from the TGN below this critical value of internal pH.  相似文献   

5.
Phosphatidylinositol 4-kinasebeta (PI4Kbeta) plays an essential role in maintaining the structural integrity of the Golgi complex. In a search for PI4Kbeta-interacting proteins, we found that PI4Kbeta specifically interacts with the GTP-bound form of the small GTPase rab11. The PI4Kbeta-rab11 interaction is of functional significance because inhibition of rab11 binding to PI4Kbeta abolished the localization of rab11 to the Golgi complex and significantly inhibited transport of vesicular stomatitis virus G protein from the Golgi complex to the plasma membrane. We propose that a novel function of PI4Kbeta is to act as a docking protein for rab11 in the Golgi complex, which is important for biosynthetic membrane transport from the Golgi complex to the plasma membrane.  相似文献   

6.
The small GTP-binding protein rab6 functions in intra-Golgi transport   总被引:19,自引:4,他引:15       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1575-1588
Rab6 is a ubiquitous ras-like GTP-binding protein associated with the membranes of the Golgi complex (Goud, B., A. Zahraoui, A. Tavitian, and J. Saraste. 1990. Nature (Lond.). 345:553-556; Antony, C., C. Cibert, G. Geraud, A. Santa Maria, B. Maro, V. Mayau, and B. Goud. 1992. J. Cell Sci. 103: 785-796). We have transiently overexpressed in mouse L cells and human HeLa cells wild-type rab6, GTP (rab6 Q72L), and GDP (rab6 T27N) -bound mutants of rab6 and analyzed the intracellular transport of a soluble secreted form of alkaline phosphatase (SEAP) and of a plasma membrane protein, the hemagglutinin protein (HA) of influenza virus. Over-expression of wild-type rab6 and rab6 Q72L greatly reduced transport of both markers between cis/medial (alpha- mannosidase II positive) and late (sialyl-transferase positive) Golgi compartments, without affecting transport from the endoplasmic reticulum (ER) to cis/medial-Golgi or from the trans-Golgi network (TGN) to the plasma membrane. Whereas overexpression of rab6 T27N did not affect the individual steps of transport between ER and the plasma membrane, it caused an apparent delay in secretion, most likely due to the accumulation of the transport markers in late Golgi compartments. Overexpression of both rab6 Q72L and rab6 T27N altered the morphology of the Golgi apparatus as well as that of the TGN, as assessed at the immunofluorescence level with several markers. We interpret these results as indicating that rab6 controls intra-Golgi transport, either acting as an inhibitor in anterograde transport or as a positive regulator of retrograde transport.  相似文献   

7.
The Golgi apparatus is fragmented and dispersed in Vero cells but not in human 143TK- cells infected with wild-type herpes simplex virus 1. Moreover, a recombinant virus lacking the gene encoding the membrane protein UL20 (UL20- virus) accumulates in the space between the inner and outer nuclear membranes of Vero cells but is exported and spreads from cell to cell in 143TK- cell cultures. Here we report that in Vero cells infected with UL20- virus, the virion envelope glycoproteins were of the immature type, whereas the viral glycoproteins associated with cell membranes were fully processed up to the addition of sialic acid, a trans-Golgi function. Moreover, the amounts of viral glycoproteins accumulating in the plasma membranes were considerably smaller than those detected on the surface of Vero cells infected with wild-type virus. In contrast, the amounts of viral glycoproteins present on the plasma membranes of 143TK- cells infected with wild-type or UL20- virus were nearly identical. We conclude that (i) in Vero cells infected with UL20- virus the block in the export of virions is at the entry into the exocytic pathway, and a second block in the exocytosis of viral glycoproteins associated with cytoplasmic membranes is due to an impairment of transport beyond Golgi fragments containing trans-Golgi enzymes and not to a failure of the Golgi oligosaccharide-processing functions; (ii) these defects are manifested in cells in which the Golgi apparatus is fragmented; and (iii) the UL20 protein compensates for these defects by enabling transport to and from the fragmented Golgi apparatus.  相似文献   

8.
Rab1 is a small GTPase regulating vesicular traffic between early compartments of the secretory pathway. To explore the role of rab1 we have analyzed the function of a mutant (rab1a[S25N]) containing a substitution which perturbs Mg2+ coordination and reduces the affinity for GTP, resulting in a form which is likely to be restricted to the GDP-bound state. The rab1a(S25N) mutant led to a marked reduction in protein export from the ER in vivo and in vitro, indicating that a guanine nucleotide exchange protein (GEP) is critical for the recruitment of rab1 during vesicle budding. The mutant protein required posttranslational isoprenylation for inhibition and behaved as a competitive inhibitor of wild-type rab1 function. Both rab1a and rab1b (92% identity) were able to antagonize the inhibitory activity of the rab1a(S25N) mutant, suggesting that these two isoforms are functionally interchangeable. The rab1 mutant also inhibited transport between Golgi compartments and resulted in an apparent loss of the Golgi apparatus, suggesting that Golgi integrity is coupled to rab1 function in vesicular traffic.  相似文献   

9.
Stable BHK cell lines inducibly expressing wild-type or dominant negative mutant forms of the rab7 GTPase were isolated and used to analyze the role of a rab7-regulated pathway in lysosome biogenesis. Expression of mutant rab7N125I protein induced a dramatic redistribution of cation-independent mannose 6–phosphate receptor (CI-MPR) from its normal perinuclear localization to large peripheral endosomes. Under these circumstances ~50% of the total receptor and several lysosomal hydrolases cofractionated with light membranes containing early endosome and Golgi markers. Late endosomes and lysosomes were contained exclusively in well-separated, denser gradient fractions. Newly synthesized CI-MPR and cathepsin D were shown to traverse through an early endocytic compartment, and functional rab7 was crucial for delivery to later compartments. This observation was evidenced by the fact that 2 h after synthesis, both markers were more prevalent in fractions containing light membranes. In addition, both were sensitive to HRP-DAB– mediated cross-linking of early endosomal proteins, and the late endosomal processing of cathepsin D was impaired. Using similar criteria, the lysosomal membrane glycoprotein 120 was not found accumulated in an early endocytic compartment. The data are indicative of a post-Golgi divergence in the routes followed by different lysosome-directed molecules.  相似文献   

10.
Huntingtin is a large membrane-associated scaffolding protein that associates with endocytic and exocytic vesicles and modulates their trafficking along cytoskeletal tracks. Although the progression of Huntington’s disease is linked to toxic accumulation of mutant huntingtin protein, loss of wild-type huntingtin function might also contribute to neuronal cell death, but its precise function is not well understood. Therefore, we investigated the molecular role of huntingtin in exocytosis and observed that huntingtin knockdown in HeLa cells causes a delay in endoplasmic reticulum (ER)-to-Golgi transport and a reduction in the number of cargo vesicles leaving the trans-Golgi network. In addition, we found that huntingtin is required for secretory vesicle fusion at the plasma membrane. Similar defects in the early exocytic pathway were observed in primary fibroblasts from homozygous Htt140Q/140Q knock-in mice, which have the expansion inserted into the mouse huntingtin gene so lack wild-type huntingtin expression. Interestingly, heterozygous fibroblasts from a Huntington’s disease patient with a 180Q expansion displayed no obvious defects in the early secretory pathway. Thus, our results highlight the requirement for wild-type huntingtin at distinct steps along the secretory pathway.KEY WORDS: Exocytosis, Huntingtin, ER, Golgi, Vesicle fusion  相似文献   

11.
Members of the rab/YPT1/SEC4 gene family of small molecular weight GTPases play key roles in the regulation of vesicular traffic between compartments of the exocytic pathway. Using immunoelectron microscopy, we demonstrate that a dominant negative rab1a mutant, rab1a(N124I), defective for guanine nucleotide binding in vitro, leads to the accumulation of vesicular stomatitis virus glycoprotein (VSV-G) in numerous pre-cis-Golgi vesicles and vesicular-tubular clusters containing rab1 and beta-COP, a subunit of the coatomer complex. Similar to previous observations (Balch et al. 1994. Cell. 76:841-852), VSV-G was concentrated nearly 5-10-fold in vesicular carriers that accumulate in the presence of the rab1a(N124I) mutant. VSV-G containing vesicles and vesicular-tubular clusters were also found to accumulate in the presence of a rab1a effector domain peptide mimetic that inhibits endoplasmic reticulum to Golgi transport, as well as in the absence of Ca2+. These results suggest that the combined action of a Ca(2+)-dependent protein and conformational changes associated with the GTPase cycle of rab1 are essential for a late targeting/fusion step controlling the delivery of vesicles to Golgi compartments.  相似文献   

12.
The Golgi apparatus is a dynamic organelle whose structure is sensitive to vesicular traffic and to cell cycle control. We have examined the potential role for rab1a, a GTPase previously associated with ER to Golgi and intra-Golgi transport, in the formation and maintenance of Golgi structure. Bacterially expressed, recombinant rab1a protein was microinjected into rat embryonic fibroblasts, followed by analysis of Golgi morphology by fluorescence and electron microscopy. Three recombinant proteins were tested: wild-type rab, mutant rab1a(S25N), a constitutively GDP-bound form (Nuoffer, C., H. W. Davidson, J. Matteson, J. Meinkoth, and W. E. Balch, 1994. J. Cell Biol. 125: 225- 237), and mutant rab1a(N124I) defective in guanine nucleotide binding. Microinjection of wild-type rab1a protein or a variety of negative controls (injection buffer alone or activated ras protein) did not affect the appearance of the Golgi, as visualized by immunofluorescence of alpha-mannosidase II (Man II), used as a Golgi marker. In contrast, microinjection of the mutant forms promoted the disassembly of the Golgi stacks into dispersed vesicular structures visualized by immunofluorescence. When S25N-injected cells were analyzed by EM after immunoperoxidase labeling, Man II was found in isolated ministacks and large vesicular elements that were often surrounded by numerous smaller unlabeled vesicles resembling carrier vesicles. Golgi disassembly caused by rab1a mutants differs from BFA-induced disruption, since beta- COP remains membrane associated, and Man II does not redistribute to the ER. BFA can still cause these residual Golgi elements to fuse and disperse, albeit at a slower rate. Moreover, BFA recovery is incomplete in the presence of rab1 mutants or GTP gamma S. We conclude that GTP exchange and hydrolysis by GTPases, specifically rab1a, are required to form and maintain normal Golgi stacks. The similarity of Golgi disassembly seen with rab1a mutants to that occurring during mitosis, may point to a molecular basis involving rab1a for fragmentation of the Golgi apparatus during cell division.  相似文献   

13.
ER to Golgi transport: Requirement for p115 at a pre-Golgi VTC stage   总被引:1,自引:0,他引:1  
The membrane transport factor p115 functions in the secretory pathway of mammalian cells. Using biochemical and morphological approaches, we show that p115 participates in the assembly and maintenance of normal Golgi structure and is required for ER to Golgi traffic at a pre-Golgi stage. Injection of antibodies against p115 into intact WIF-B cells caused Golgi disruption and inhibited Golgi complex reassembly after BFA treatment and wash-out. Addition of anti-p115 antibodies or depletion of p115 from a VSVtsO45 based semi-intact cell transport assay inhibited transport. The inhibition occurred after VSV glycoprotein (VSV-G) exit from the ER but before its delivery to the Golgi complex, and resulted in VSV-G protein accumulating in peripheral vesicular tubular clusters (VTCs). The p115-requiring step of transport followed the rab1-requiring step and preceded the Ca(2+)-requiring step. Unexpectedly, mannosidase I redistributed from the Golgi complex to colocalize with VSV-G protein arrested in pre-Golgi VTCs by p115 depletion. Redistribution of mannosidase I was also observed in cells incubated at 15 degrees C. Our data show that p115 is essential for the translocation of pre-Golgi VTCs from peripheral sites to the Golgi stack. This defines a previously uncharacterized function for p115 at the VTC stage of ER to Golgi traffic.  相似文献   

14.
p200 is a cytoplasmic protein that associates with vesicles budding from the trans-golgi network (TGN). The protein was identified by a monoclonal antibody AD7. We have used this antibody to analyze whether p200 functions in exocytic transport from the TGN to the apical or basolateral plasma membrane in Madin-Darby canine kidney cells. We found that transport of the viral marker proteins, influenza hemagglutinin (HA) to the apical surface or vesicular stomatitis virus glycoprotein (VSV G) to the basolateral surface in streptolysin O-permeabilized cells was not affected when p200 was depleted from both the membranes and the cytosol. When vesicles isolated from perforated cells were analyzed by equilibrium density gradient centrifugation, the p200 immunoreactive membranes did not comigrate with either the apical vesicle marker HA or the basolateral vesicle marker VSV G. Immunoelectron microscopy of perforated and double-labeled cells showed that the p200 positive vesicular profiles were not labeled by antibodies to HA or VSV G when the viral proteins were accumulated in the TGN. Furthermore, the p200-decorated vesicles were more electron dense than those labeled with the viral antibodies. Together, these results suggest that p200 does not function in the transport pathways that carry HA from the TGN to the apical surface or VSV G from the TGN to the basolateral surface.  相似文献   

15.
P Zagouras  A Ruusala    J K Rose 《Journal of virology》1991,65(4):1976-1984
The vesicular stomatitis virus (VSV) glycoprotein (G) forms noncovalently linked trimers in the endoplasmic reticulum (ER) prior to transport to the cell surface. Here we examined the formation of heterotrimers between wild-type and mutant subunits that were retained in the ER by C-terminal retention signals. When G protein was coexpressed with mutant subunits that formed trimers at the wild-type rate and were transported from the ER at the wild-type rate, heterotrimers were readily detected. In contrast, when G protein was coexpressed with mutant subunits that formed trimers at the wild-type rate, but were retained in the ER, heterotrimers were not detected unless transport of the wild-type molecules from the ER was blocked. After removal of transport block, the heterotrimers then dissociated and reassorted to homotrimers of the mutant protein that were retained in the ER and wild-type trimers that were transported to the cell surface. These and other results presented here indicate that there is an equilibrium between G protein trimers and monomers in vivo, at least in the ER. This equilibrium may function to allow escape of wild-type subunits from aberrant retained subunits.  相似文献   

16.
We have characterized the process by which the vesicular stomatitis virus (VSV) G protein acquires its final oligomeric structure using density-gradient centrifugation in mildly acidic sucrose gradients. The mature wild-type VSV G protein is a noncovalently associated trimer. Trimers are assembled from newly synthesized G monomers with a t1/2 of 6-8 min. To localize the site of trimerization and to correlate trimer formation with steps in transport between the endoplasmic reticulum (ER) and Golgi complex, we examined the kinetics of assembly of the temperature-sensitive mutant VSV strain, ts045. At the nonpermissive temperature (39 degrees C), ts045 G protein is not transported from the ER. The phenotypic defect that inhibited export from the ER at the nonpermissive temperature was found to be the accumulation of ts045 G protein in an aggregate. After being shifted to the permissive temperature (32 degrees C), the ts045 G protein aggregate rapidly dissociated (t1/2 less than 1 min) to monomeric G protein which subsequently trimerized with the same kinetics as the wild-type G protein. Only trimers were transported to the Golgi complex. Kinetic studies, as well as the finding that trimerization occurred under conditions which block ER to Golgi transport (at both 15 and 4 degrees C), showed that trimers were formed in the ER. Depletion of cellular ATP inhibited both the dissociation of the aggregated intermediate of ts045 G protein as well as the formation of stable trimers. The results indicate that oligomerization of G protein occurs in several steps, is sensitive to cellular ATP, and is required for transport from the ER.  相似文献   

17.
The patented cell line from the cabbage looperTrichoplusia ni(High Five from Invitrogen) was found to grow readily under cholesterol-free (CF) culture conditions. Cellular cholesterol became undetectable by CF passage 4, while growth rate and overall cell morphology remained unaffected for at least 59 CF passages. The Golgi apparatus in CF cells was significantly smaller than in control cells, and the CF cells also concentrated a ceramide-based fluorescent Golgi marker to a greater extent, but endoplasmic reticulum morphology appeared unaffected. Two proteins were expressed in High Five cells from recombinant baculoviruses under CF and control conditions: the vesicular stomatitis virus (VSV) fusion glycoprotein G and the influenza virus ion channel M2. Both proteins were expressed in comparable amounts in CF and control cells. Both were properly assembled and transported to the plasma membrane in CF cells, indicating the presence of functional Golgi. Wild-type G protein expression resulted in extensive syncytia formation in both CF and control cells, showing that cholesterol is not required for VSV fusion. However, a mutant G protein lacking six transmembrane domain residues was inactive in both CF and control cells. Influenza M2 protein was functional in control cells, as indicated by its amantadine-inhibitable cytotoxicity, but cytotoxicity was absent in CF cells expressing this protein, indicating a cholesterol-dependence for the cytotoxic action of this protein. CF and control cells were both infectible with VSV. However, infected cell centers were modestly decreased (ca. 3.5-fold) in CF cells. CF cells offer a convenient and novel approach to the study of specific cholesterol functions.  相似文献   

18.
One of the major activities of developing neurons is the transport of new membrane to the growing axon. Candidates for playing a key role in the regulation of this intense traffic are the small GTP-binding proteins of the rab family. We have used hippocampal neurons in culture and analyzed membrane traffic activity after suppressing the expression of the small GTP-binding protein rab8. Inhibition of protein expression was accomplished by using sequence-specific antisense oligonucleotides. While rab8 depletion resulted in the blockage of morphological maturation in 95% of the neurons, suppression of expression of another rab protein, rab3a, had no effect, and all neurons developed normal axons and dendrites. The impairment of neuronal maturation by rab8 antisense treatment was due to inhibition of membrane traffic. Thus, by using video-enhanced differential interference contrast microscopy, we observed in the rab8-depleted cells a dramatic reduction in the number of vesicles undergoing anterograde transport. Moreover, by incubating antisense-treated neurons with Bodipy-labeled ceramide, a fluorescent marker for newly formed exocytic vesicles, we observed fluorescence labeling restricted to the Golgi apparatus, whereas in control cells labeling was found also in the neurites. These results show the role of the small GTPase rab8 in membrane traffic during neuronal process outgrowth.  相似文献   

19.
Incubation of cultured cells in hypertonic medium and sodium-free medium have been shown to block transport at two different stages along the endocytic pathway. To determine the effects of these treatments on the exocytic pathway, we studied the transport of the membrane glycoprotein of vesicular stomatitis virus (VSV-G) in cells infected with tsO45 mutant virus. This mutant synthesizes a VSV-G that accumulates in the endoplasmic reticulum (ER) when cells are incubated at 39.5 degrees C. In addition, VSV-G accumulates in the post-ER pre-Golgi compartment when cells are incubated at 15 degrees C and in the trans-Golgi network (TGN) when cells are incubated at 18 degrees C. Upon transfer of cells to 32 degrees C in control medium, VSV-G exits each of these compartments and is transported to the cell surface. Incubation in sodium-free medium at 32 degrees C did not block transport from any of these three compartments. In contrast, incubation in hypertonic medium blocked export from the ER, transport from the pre-Golgi compartment to the Golgi complex, and transport from the TGN to the cell surface. Our results, in combination with previous studies, suggest that hypertonic medium blocks at least five distinct transport steps; the three exocytic steps described here, endocytosis from the cell surface, and transport of cell surface proteins into the Golgi complex. This raises the possibility that vesicular transport in different parts of the cell shares common elements that are inhibited by this treatment.  相似文献   

20.
Gangliosides, complex glycosphingolipids containing sialic acids, have been found to reside in glycosphingolipid-enriched microdomains (GEM) at the plasma membrane. They are synthesized in the lumen of the Golgi complex and appear unable to translocate from the lumenal toward the cytosolic surface of Golgi membrane to access the monomeric lipid transport. As a consequence, they can only leave the Golgi complex via the lumenal surface of transport vesicles. In this work we analyzed the exocytic transport of the disialo ganglioside GD3 from trans-Golgi network (TGN) to plasma membrane in CHO-K1 cells by immunodetection of endogenously synthesized GD3. We found that ganglioside GD3, unlike another luminal membrane-bounded lipid (glycosylphosphatidylinositol-anchored protein), did not partition into GEM domains in the Golgi complex and trafficked from TGN to plasma membrane by a brefeldin A-insensitive exocytic pathway. Moreover, a dominant negative form of Rab11, which prevents exit of vesicular stomatitis virus glycoprotein from the Golgi complex, did not influence the capacity of GD3 to reach the cell surface. Our results strongly support the notion that most ganglioside GD3 traffics from the TGN to the plasma membrane by a non-conventional vesicular pathway where lateral membrane segregation of vesicular stomatitis virus glycoprotein (non-GEM resident) and glycosylphosphatidylinositol-anchored proteins (GEM resident) from GD3 is required before exiting TGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号