首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ontogenetic development of the guinea pig uterine autonomic innervation was studied immunohistochemically using neurofibrillary protein (NF) and neuron specific enolase (NSE) as general neuronal markers, tyrosine hydroxylase (TH) and dopamine -hydroxylase (DBH) as specific markers for adrenergic innervation and S-100 protein as marker for Schwann cell structure and/or function. In addition, comparisons were made of the development of the different populations of peptide-containing nerves.The structure and time of appearance were similar for nerves with NF-, NSE-, TH- and DBH-immunoreactivities, which were first present in the organ periphery as coarse nerve trunks, then extending centrally and branching into non-varicose nerves. From these, varicose nerves developed first in relation to vessels and then in association with the myometrial smooth musculature. Development was completed carlier in the cervix than in the uterine horns suggesting differences in local environment. In comparison, S-100 nerve-immunoreactivity appeared later but attained complete development more rapidly than axonal structures. Neuropeptide Y-immunoreactive nerves showed a similar developmental pattern to presumed adrenergic nerves, further verifying the assumption of intraneuronal localization of NPY in uterine adrenergic nerves. Other peptide-containing nerves were developed later probably reflecting differences in neuronal growth properties.  相似文献   

2.
Summary In the guinea-pig uterus, by use of an indirect immunofluorescence method, S-100 immunoreactivity was found to be restricted to nerves that corresponded in number, distribution and type to adrenergic axons and preterminals. With advancing pregnancy S-100 immunoreactivity completely disappeared in uterine tissue adjacent to a fetus, in parallel with an ultrastructural degeneration of the adrenergic innervation. In the cervix and the uterine horn devoid of a fetus, however, the number and distribution of S-100-immunoreactive nerves was seemingly unchanged and no ultrastructural changes were found in adrenergic nerves. In contrast, chemical sympathectomy produced by 6-hydroxydopamine did not change S-100 immunoreactivity of uterine nerves. These findings suggest that there are differences in the denervation effected by chemical and by pregnancy-induced sympathectomy. The latter probably represents a special type of adrenergic denervation by inducing a degeneration of Schwann cells in addition to destruction of neuronal structures. This may explain the differences in the speed of regeneration of uterine adrenergic nerves following the two types of denervation.  相似文献   

3.
Summary The structural organization of the guinea-pig uterine innervation was investigated by an immunofluorescence method using neurofibrillary protein (NF) and neuron-specific enolase (NSE) as general neuronal markers. NF- and NSE-immunoreactive nerve trunks and non-varicose nerves formed continuous networks similar to nerves with analogue morphology and with immunoreactivities for tyrosine hydroxylase (TH; adrenergic nerves) and neuropeptide Y (NPY). NF- and NSE-immunoreactive non-varicose nerves occurred in the myometrium and along vessels, where TH- and NPY-immunoreactive varicose nerves were also comparatively frequent. After chemical sympathectomy all TH- and NPY-immunoreactive varicose nerves and most NF- and NSE-immunoreactive non-varicose nerves disappeared, suggesting colocalization of TH, NPY, NF and NSE immunoreactivities. During pregnancy all NF-, NSE-, TH- and NPY-immunoreactive nerve structures disappeared in the foetus-bearing uterine horns whereas in the cervix and non-foetus-bearing uterine horns only the myometrial TH- and NPY-immunoreactive varicose nerves disappeared. After parturition there was a complete structural restoration of all types of immunoreactive nerves in previously non-foetus-related tissue. The reinnervation of this tissue followed a similar time-course to that after chemical sympathectomy. In contrast, the reinnervation of previously foetus-related tissue was much slower and incomplete.In conclusion, the whole autonomic uterine innervation undergoes overt structural changes during pregnancy and these changes are related to the foetus-bearing regions.  相似文献   

4.
Summary The extrinsic innervation of the guinea pig uterus was studied by immunohistochemical, ultrastructural and enzyme histochemical methods.The extrinsic innervation was organized in two major ways. One consisted of nerve trunks and non-varicose nerve fibres running in the suspensory ligament, and the other of a plexus of varicose nerve fibres surrounding vessels, and non-vessel-related non-varicose nerve fibres in the mesouterus. The use of different neuronal and Schwann cell markers showed that the extrinsic innervation was predominantly adrenergic and contained only few peptidergic nerves. Acetylcholinesterase-positive (cholinergic) nerves were only found around the uterine artery.In late pregnancy, the extrinsic nerves of the mesouterus adjacent to foetus-containing uterine horns underwent pronounced degenerative changes comprising both Schwann cell and axonal structures. In comparison, no changes were found in extrinsic nerves of mesouteri adjacent to non-foetus-bearing uterine horns or in extrinsic nerves in the suspensory ligaments. Further, chemical sympathectomy produced axonal degeneration but no changes in the Schwann cells.In conclusion, the pregnancy-induced nerve degeneration is of a very special type different from that following chemical sympathectomy and represents a local phenomenon related to the conceptus. Hypothetically, this could be of importance for counteracting disturbances in placental blood flow.  相似文献   

5.
Summary The guinea pig uterus is supplied by different populations of nerves which can be demonstrated by specific immunocytochemical and histochemical techniques. So far, there has been no single marker displaying entire peripheral innervation patterns. Recently, protein gene product (PGP) 9.5, a cytoplasmic protein in neurons and neuroendocrine cells, was found to visualize both different populations and subtypes of nerves. This prompted the present study of using PGP 9.5 for visualization of the whole uterine innervation. This was performed by the indirect immunofluorescence method using antiserum to PGP 9.5 raised in rabbits.PGP-immunoreactivity was present in all neuronal parts of the extrinsic and intrinsic uterine innervation, including different subpopulations of nerves. This was verified by chemical sympathectomy and sensory denervation with 6-hydroxydopamine and capsaicin-treatment respectively, and double immunostaining.By term a disappearance of uterine PGP-nerve-immunoreactivity was observed which was almost complete in fetus-bearing uterine tissue and further strengthens previous assumptions of a general, pregnancy-induced uterine neuronal degeneration.The developmental time-course and morphology of PGP-immunoreactive nerve structures was similar to that for other neuronal markers and support the suggestion of PGP-immunoreactivity as a general marker for the entire uterine innervation, and suggests that the presence of PGP 9.5-immunoreactivity may coincide with functional maturation of uterine innervation.  相似文献   

6.
The time course of pregnancy-induced changes in the contractile responses of isolated uterine rings and sympathetic innervation pattern were studied using electric field stimulation and histofluorescence techniques, respectively, in intact and 6-hydroxydopamine-treated rats. Neurally mediated contractions elicited by field stimulation (0.6 msec, 1-70 Hz, 40 V) were measured in uterine preparations obtained from nonpregnant, 6-hydroxydopamine-treated and 5-, 10-, 15-, 18-, and 22-day (term) pregnant rats. At all frequencies, the amplitudes of contractions were highest in nonpregnant uteri. Stimulation at 1-2.5 Hz evoked contractions in 10-day pregnant uteri but failed to cause contractions on Day 5 and from Day 15 onward. In uterine preparations obtained from term and from 6-hydroxydopamine-treated rats, contractions could not be evoked by stimulation at 1-20 Hz. Fluorescence histochemistry of uterine adrenergic nerves revealed rich perivascular and myometrial innervation in nonpregnant and in pregnant rats through Day 10. Degeneration and loss of adrenergic nerve fibers was apparent by Day 15, and fluorescent myometrial and perivascular nerves were practically absent by Day 22. These findings demonstrate a progressive, frequency-related reduction of nerve-mediated uterine contractions beginning in midterm pregnancy, in parallel with a gradual loss of adrenergic nerve fibers. Pregnancy-induced nerve degeneration may promote the development of nonsynaptic alpha-adrenergic uterine contractile activity towards term. The reduced responsiveness of uterine smooth muscle to electric field stimulation in early pregnancy appears to be unrelated to alterations in uterine innervation but may be related to changes associated with implantation.  相似文献   

7.
Summary The distribution of nerves containing immunoreactivity for the VIP and enkephalins has been demonstrated in the human prostate and seminal vesicles using the immunoperoxidase bridge. VIP-containing nerves were detected in both organs studied mainly in association with the epithelium, while nerves containing ELI seemed to be related to smooth muscle. Compared with the distribution of adrenergic and cholinergic nerves in the prostate marked differences in the density of the innervation were detected. The possible nature of these peptide-containing nerves is discussed.  相似文献   

8.
Summary Nerve fibers containing substance P, VIP, enkephalin or somatostatin are numerous in the porcine gut wall. They are particularly numerous in the submucosal and myenteric plexuses where peptide-containing cell bodies are also observed. Peptide-containing nerve fibers occur also in the vagus nerves, suggesting that the gut receives an extrinsic supply of peptidergic nerves. The extrinsic contribution to the peptide-containing nerve supply of the gut wall has not yet been quantitatively assessed. In an attempt to clarify this question pigs were subjected to bilateral subdiaphragmatic vagotomy. Another group of animals was subjected to complete extrinsic denervation by autotransplantation of a jejunal segment. The pigs were killed at various time intervals after the operations; the longest time interval studied was four months. Following vagotomy the innervation pattern of the jejunum appeared completely unaffected. Following complete extrinsic denervation the adrenergic nerve fibers disappeared, while peptide-containing and acetylcholinesterase-positive nerve fibers remained apparently unaltered. This was confirmed chemically in the case of substance P.The motor activity of smooth muscle from the jejunum was studied in vitro. At low stimulation frequencies the smooth muscle from control jejunum responded by relaxation; upon cessation of stimulation a contraction occurred. With increasing stimulation frequencies the duration of the relaxation decreased; at high frequency stimulation only a contraction was recorded. In the autotransplant low frequency stimulation induced no or only a weak relaxation; high frequency stimulation induced contraction. After cholinergic and adrenergic blockade, the muscle responded with relaxation at all frequencies; the response was similar in innervated and denervated specimens. On the whole, the effects of extrinsic denervation on the motor activity of smooth muscle from porcine jejunum were minor, possibly reflecting the high degree of autonomy of the gut.  相似文献   

9.
The adrenergic innervation of the urinary bladder of normal female and pregnant rats has been studied using a fluorescence histochemical method. The bladder is richly innervated by adrenergic nerve fibres as is evidenced by the presence of numerous adrenergic nerves in the adventitia, musculosa and submucosa. However, adrenergic nerve cells could not be observed. During pregnancy, adrenergic nerve fibres showed signs of degeneration, as most of the nerve fibres disappeared and the surviving fibres were much swollen. 10 days after parturition the pattern and density of adrenergic innervation became almost similar to those of the control animals.  相似文献   

10.
Uterine adrenergic and cholinesterase (AChE)-positive innervation of the sheep uterus during anestrus and at 4 stages of pregnancy were examined by histochemical methods. In addition, uterine and cervical myometrium concentrations of norepinephrine (NE) and dopamine (DA) were determined using high-performance liquid chromatography. During anestrus, adrenergic and AChE-positive nerve fibers in the uterine myometrium and endometrium were primarily associated with the vasculature. Innervation of myometrial smooth muscle was almost exclusively by adrenergic fibers. In the endometrium, fibers of both types were observed closely associated with endometrial glands, and adrenergic fibers were observed in the connective tissue beneath the luminal epithelium. Density of uterine innervation decreased by day 65 of pregnancy with an additional decrease by day 105. Myometrial NE concentrations were higher in the cervix than the uterus. Uterine NE concentrations generally were not affected by pregnancy. Although cervical NE per gram of tissue decreased during pregnancy, this effect of pregnancy was not detected when NE was expressed per microgram of DNA. Myometrial DA concentrations were higher in uterine segments than in the cervix. DA concentrations decreased during pregnancy in all tissues except the posterior uterine segment. The DA to NE ratio in the uterus was greater than that for the cervix and was not generally affected by the stage of pregnancy. These results demonstrate that cholinergic and adrenergic nerves supply the sheep uterus. Decreasing fiber density during pregnancy suggests that a majority of the innervation to the sheep uterus is supplied by 'short' nerve fibers whose activity is regulated by steroids of pregnancy. The possible role of DA as a neurotransmitter in the sheep uterus is discussed.  相似文献   

11.
The indirect immunofluorescence technique was used to determine the distribution of peptide-containing axons in the gall bladder of the cane toad, Bufo marinus. In addition, the adrenergic innervation of the gall bladder was examined by use of immunoreactivity to the catecholamine-synthesizing enzyme, tyrosine hydroxylase, and glyoxylic acid-induced fluorescence. On the basis of peptide coexistence, two intrinsic populations of neurones and their projecting fibres could be distinguished substance P neurones and vasoactive intestine peptide neurones. Neither of these two types of neurones contained any other colocalized neuropeptides. Four populations of nerve fibres arising from cell bodies outside the gall bladder were identified: nerves containing colocalized galanin, somatostatin and vasoactive intestinal peptide; nerves containing colocalized calcitonin gene-related peptide and substance P; adrenergic nerves containing neuropeptide Y; and nerves containing only adrenaline.  相似文献   

12.
Estrogen plays important roles in preparing mammary tissue for lactation. However, estrogen also influences innervation in some tissues. We examined the effect of estrogen on peripheral innervation of mammary tissues of ovariectomized adult virgin female rats. Seven days after ovariectomy, 17beta-estradiol or placebo pellets were implanted subcutaneously, and tissues were harvested 1 week later. Estrogen treatment decreased mammary gland mass and adipocyte content, while ductal content increased and vascular composition was unaffected. Estrogen increased total areas occupied by nerves in mammary gland sections immunostained for the pan-neuronal marker protein gene product 9.5, and this increase persisted after normalizing for treatment-induced differences in gland mass. Although a significant increase in tyrosine hydroxylase-immunoreactive sympathetic nerve area was observed, no difference was detected following correction for differences in gland size, implying a conserved number of sympathetic nerves in the face of reduced gland volume. Calcitonin gene-related peptide-immunoreactive sensory nerve sectional area was also increased, and corrected nerve area remained 88% greater, indicating nerve proliferation during estrogen treatment. Total, sensory, and sympathetic innervation of the nipple and adjacent dermal tissue were unaffected by estrogen. We conclude that chronic estrogen elevation induces selective proliferation of rat mammary gland calcitonin gene-related peptide-containing nerves, which are associated primarily with blood vessels and are probably nociceptors. Because they are likely to subserve a vasodilatory function, increased innervation may promote increased blood flow necessary for milk formation during suckling. Moreover, these findings may help explain abundant anecdotal reports of increased breast sensitivity in humans under high estrogen conditions.  相似文献   

13.
Summary Using histochemical, immunohistochemical and biochemical techniques, noradrenaline-, neuropeptide Y-, vasoactive intestinal polypeptide-, substance P- and calcitonin gene-related peptide-containing nerve fibres were studied in the uterine artery of virgin, progesterone-treated and pregnant guinea-pigs. Morphological changes following hormone treatment or in pregnancy were also evaluated in a quantitative study on semithin sections of the uterine artery. In late pregnancy, the number of noradrenalinecontaining nerve fibres, which formed the densest plexus in virgin animals, was significantly decreased, a finding supported by a significant reduction in noradrenaline levels. This reduction was not mimicked by systemic progesterone treatment. In contrast, the innervation of the uterine artery by neuropeptide Y-containing nerve fibres was increased in pregnancy, while the other peptidergic nerves and peptide levels were unchanged after progesterone treatment and in pregnancy. These changes led to a predominance of innervation by neuropeptide Y- rather than noradrenaline-containing nerve fibres in late pregnancy. No morphological changes were detected following progesterone treament, but pregnancy led to a marked increase in the cross-sectional area of the vessel accompanied by an increase in the thickness of the media.  相似文献   

14.
Adrenergic innervation of the ureters, urinary bladder, and urethra in pigs   总被引:1,自引:0,他引:1  
Studies were conducted on 4 sexually mature and 4 immature pigs. Scraps of the ureters, urinary bladder, and urethra were cut with a freezing microtome. Fluorescence method of Torre and Surgeon (1976) was used to reveal the adrenergic innervation. It was found that the ureters were weakly supplied with the adrenergic nerves; most of the nerves were located in the muscular and submucosal membranes. Apex of the urinary bladder possessed the weakest innervation. More nerves were found in particular layers of the bladder corpus whereas bladder trigonum and cervix possessed numerous nerves. Adrenergic innervation of the urethra was similar to that of the urinary bladder's cervix. Adrenergic nerves were present in the serous and muscular membranes of both the urinary bladder and the urethra. Part of the nerve fibres was connected with blood vessels of the organs under study.  相似文献   

15.
Uterine innervation undergoes substantial reorganization associated with changes in reproductive status. Nerves innervating the uterus are decreased in pregnancy and puberty, and even the normal rodent estrous cycle is characterized by fluctuations in numbers of myometrial nerve fibers. During the follicular (proestrus/estrous) phase of the estrous cycle, intact nerves are rapidly depleted and then return over the next 2-3 days in the luteal (metestrus/diestrus) phase. We hypothesize that uterine nerve depletion is initiated by increased circulating estrogen in the follicular phase. However, studies have not shown whether estrogen can reduce uterine innervation and, if so, whether the time course is compatible with the rapid changes observed in the estrous cycle. These questions were addressed in the present study. Mature ovariectomized virgin rats received 17-beta-estradiol as a single injection (10 microg/kg s.c.) or chronically from timed-release pellets (0.1 microg/pellet for 3 weeks sustained release). Total (protein gene-product 9.5-immunoreactive) and sympathetic (dopamine beta-hydroxylase-immunoreactive) uterine innervation was assessed quantitatively. Both total and sympathetic innervation was abundant in uterine longitudinal smooth muscle of ovariectomized rats. However, following acute or chronic estrogen administration, total and sympathetic fiber numbers were markedly decreased. This was not due to altered uterine size, as reductions persisted after correcting for size differences. Our results indicate that sympathetic nerves are lost from uterine smooth muscle after estradiol treatment in a manner similar to that seen in the intact animal during estrus and pregnancy. This suggests that the rise in estradiol prior to estrus is sufficient to deplete uterine sympathetic innervation.  相似文献   

16.
Summary Non-hairy and hairy human skin were investigated with the use of the indirect immunohistochemical technique employing antisera to different neuronal and non-neuronal structural proteins and neurotransmitter candidates. Fibers immunoreactive to antisera against neurofilaments, neuron-specific enolase, myelin basic protein, protein S-100, substance P, neurokinin A, neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) were detected in the skin with specific distributional patterns. Neurofilament-, neuron-specific enolase-, myelin basic protein-, protein S-100-, substance P-, neurokinin A-and vasoactive intestinal polypeptide (VIP)-like immunoreactivities were found in or in association with sensory nerves; moreover, neuron-specific enolase-, myelin basic protein-, protein S-100, neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide (VIP)-like immunoreactivities occurred in or in association with autonomic nerves. It was concluded that antiserum against neurofilaments labels sensory nerve fibers exclusively, whereas neuron-specific enolase-, myelin basic protein- and protein S-100-like immunoreactivities are found in or in association with both sensory and autonomic nerves. Substance P- and neurokinin A-like immunoreactivities were observed only in sensory nerve fibers, and neuropeptide Y- and tyrosine hydroxylase-like immunoreactivities occurred only in autonomic nerve fibers, whereas vasoactive intestinal polypeptide (VIP)-like immunoreactivity was seen predominantly in autonomic nerves, but also in some sensory nerve fibers.  相似文献   

17.
Summary The autonomic innervation of the ovary was studied in 12 mammalian species utilizing the cholinesterase method in combination with pseudocholinesterase inhibition for the cholinergic component, and glyoxylic acid histochemistry together with fluorometric determination of noradrenaline for the adrenergic component. Ovaries from cow, sheep, cat, and guinea pig were very richly supplied with adrenergic nerves in the cortical stroma, particularly enclosing follicles in various stages of development. In the follicular wall the nerve terminals were located in the theca externa, where they ran parallel to the follicular surface. Numerous adrenergic terminals also surrounded ovarian blood vessels. The adrenergic innervation was of intermediary density in the human ovary and in the pig, dog, cat, and opossum. Ovaries from rabbit, mouse and hamster had a sparse adrenergic nerve supply. The amount of intraovarian adrenergic nerves agreed well with the tissue concentration of noradrenaline in the various species. The cholinergic innervation was generally less well developed, but had the same distribution as the adrenergic system around blood vessels and in the ovarian stroma, including follicular walls.  相似文献   

18.
The efferent innervation and some characteristics of nerve fibers of the liver lobule in the tree shrew, a primate, are described. Nerve endings on hepatocytes were encountered regularly and were determined to be efferent adrenergic nerves. Transmission electron microscopy revealed nerve endings and varicosities in close apposition to the hepatocytes adjacent to the connective tissue of the triads as well as within the liver lobule in the space of Disse. Fluorescence microscopy indicated the existence of adrenergic nerves with a similar distribution. Autoradiography of the avid uptake of exogenous [3H]norepinephrine indicated that all intralobular nerves are potentially norepinephrinergic (adrenergic). Chemical sympathectomy with 6-OH-dopamine resulted in the degeneration of all intralobular liver nerve fibers as revealed by fluorescence microscopy and electron microscopy. Substantial regeneration occurred after 60-90 days but was not completed by that time. Some nerves were also observed in close association with von Kupffer cells and endothelial cells. The functional significance of the efferent liver innervation is discussed.  相似文献   

19.
The innervation pattern of the bovine deferent duct was studied by acetylcholinesterase (AChE)-histochemistry and by immunohistochemical methods. Using antibodies against protein gene product-9.5 (PGP-9.5) and neuron specific enolase (NSE) the complete innervation pattern can be visualized. Thick nerve bundles in the periductal connective tissue supply the two-layered muscular coat. The inner, mainly circularly arranged muscle bundles are innervated by a particularly dense plexus, whereas the nervous network of the more longitudinally running outer musculature is somewhat looser. Additionally, nerve fibres were observed in the subepithelial space in connection with blood vessels and in close proximity to the basal lamina. An innervation pattern analogous to that of the two panneuronal markers was displayed in the immunoreaction against dopamine-beta-hydroxylase (DBH), indicating that the innervation of the bovine deferent duct is predominantly adrenergic. However, the positive reaction with a monoclonal antibody against cholinacetyltransferase (ChAT) specifically demonstrated for the first time the presence of a cholinergic nerve plexus, restricted to the inner muscular layer and the subepithelial space. A modified, direct-colouring AChE-method is presented, which uses copper chloride as source of cupric ions, acetylthiocholine chloride as substrate and 2-morpholinoethanesulphonic acid (MES) as buffer. After short incubation (1–2 h) our modified method allows the specific visualization of cholinergic nerves, comparable to the results of ChAT-immunoreactivity; following a long incubation time (24 h), it reliably illustrates the autonomous innervation pattern as completely as immunohistochemical panneuronal markers.  相似文献   

20.
Summary The innervation and myocardial cells of the human atrial appendage were investigated by means of immunocytochemical and ultrastructural techniques using both tissue sections and whole mount preparations. A dense innervation of the myocardium, blood vessels and endocardium was revealed with antisera to general neuronal (protein gene product 9.5 and synaptophysin) and Schwann cell markers (S-100). The majority of nerve fibres possessed neuropeptide Y immunoreactivity and were found associated with myocardial cells, around small arteries and arterioles at the adventitial-medial border and forming a plexus in the endocardium. Subpopulations of nerve fibres displayed immunoreactivity for vasoactive intestinal polypeptide, somatostatin, substance P and calcitonin gene-related peptide. In whole-mount preparations of endocardium, substance P and calcitonin gene-related peptide immunoreactivities were found to coexist in the same varicose nerve terminals. Ultrastructural studies revealed the presence of numerous varicose terminals associated with myocardial, vascular smooth muscle and endothelial cells. Neuropeptide Y immunoreactivity was localised to large electron-dense secretory vesicles in nerve terminals which also contained numerous small vesicles. Atrial natriuretic peptide immunoreactivity occurred exclusively in myocardial cells where it was localised to large secretory vesicles. The human atrial appendage comprises a neuroendocrine complex of peptidecontaining nerves and myocardial cells producing ANP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号