首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Resistance to the bactericidal action of normal human serum is one of the characteristics of virulent Yersinia enterocolitica. This property is attributable to the virulence plasmid harbored by pathogenic strains of the species. Serum resistance in Y. enterocolitica is thermoregulated, and its expression correlates well with the presence of virulence plasmid-encoded outer membrane proteins. To further examine the biochemical basis underlying resistance, we cloned a large segment (ca. 30 kilobases) of virulence plasmid DNA and studied the expression of plasmid-encoded outer membrane proteins in a serum-sensitive strain of Escherichia coli. The presence of the 160-kilodalton Y. enterocolitica-derived outer membrane protein 1 on E. coli transformants conferred a high degree of hydrophobicity, autoagglutinability, and resistance to serum killing. All of these properties were thermoregulated in E. coli with fidelity, suggesting that a functional thermoregulatory element was present in the cloned DNA. Elimination of protein 1 from the outer membrane of E. coli transformants by insertional inactivation of the structural gene with a Kanr gene cassette abrogated all of these properties and returned the serum-sensitive phenotype.  相似文献   

2.
The susceptibility of Escherichia coli strains with K1 surface antigen (K1+) and rods without this antigen (K1-) to the bactericidal action of normal bovine serum and human normal cord serum was determined. Seventy E. coli strains (35 K1+ and 35 K1-) were isolated from urine obtained from children with urinary tract infections. The strains investigated showed variable sensitivity to the bactericidal action of the sera. E. coli K1+ strains were characterized by lower sensitivity to bactericidal effect of the sera in comparison with K1- rods. The role of the particular mechanisms of complement activation in the process of killing of the E. coli strains was also determined.  相似文献   

3.
The effect of the outer membrane permeabilizing polycation, polymyxin B nonapeptide (PMBN) on the transformation of E. coli HB101 with pBR322 plasmid DNA was investigated. Pretreatment of cells with PMBN (followed by suspending the cells in PMBN-free medium) did not stimulate the development of competence induced by the calcium heat pulse. In the absence of calcium-ions, a high PMBN concentration (1 mM) was able to induce a low transformation frequency provided that PMBN was not removed before the addition of DNA.  相似文献   

4.
K31 antigen is the important element of outer membrane in resistance of E. coli H209 to the bactericidal activity of normal rabbit serum. The strains more resistant to the effect of serum are those containing simultaneously K31 and other factors, R plasmids (like R100. 1 and pAM588-Ia) or virulence plasmids (Vir). Mutant strains lacking of K31 antigen are strongly killed by the serum but this effect is delayed when these strains had one of the above plasmids.  相似文献   

5.
Previously we have shown that chicken egg white lysozyme, an efficient bactericidal agent, affects both gram-positive and gram-negative bacteria independently of its muramidase activity. More recently we reported that the digestion of lysozyme by clostripain yielded a pentadecapeptide, IVSDGNGMNAWVAWR (amino acid 98-112 of chicken egg white lysozyme), with moderate bactericidal activity but without muramidase activity. On the basis of this amino acid sequence three polypeptides, in which asparagine 106 was replaced by arginine (IVSDGNGMRAWVAWR, RAWVAWR, RWVAWR), were synthesized which showed to be strongly bactericidal. To elucidate the mechanisms of action of lysozyme and of the modified antimicrobial polypeptides Escherichia coli strain ML-35p was used. It is an ideal organism to study the outer and the inner membrane permeabilization since it is cryptic for periplasmic beta-lactamase and cytoplasmic beta-galactosidase unless the outer or inner membrane becomes damaged. For the first time we present evidence that lysozyme inhibits DNA and RNA synthesis and in contrast to the present view is able to damage the outer membrane of Escherichia coli. Blockage of macromolecular synthesis, outer membrane damage and inner membrane permeabilization bring about bacterial death. Ultrastructural studies indicate that lysozyme does not affect bacterial morphology but impairs stability of the organism. The bactericidal polypeptides derived from lysozyme block at first the synthesis of DNA and RNA which is followed by an increase of the outer membrane permeabilization causing the bacterial death. Inner membrane permeabilization, caused by RAWVAWR and RWVAWR, follows after the blockage of macromolecular synthesis and outer membrane damage, indicating that inner membrane permeabilization is not the deadly event. Escherichia coli bacteria killed by the substituted bactericidal polypeptides appeared, by electron microscopy, with a condensed cytoplasm and undulated bacterial membrane. So the action of lysozyme and its derived peptides is not identical.  相似文献   

6.
The major outer membrane lipoprotein (Lpp) of Escherichia coli possesses serine at position 2, which is thought to function as the outer membrane sorting signal, and lysine at the C terminus, through which Lpp covalently associates with peptidoglycan. Arginine (R) is present before the C-terminal lysine in the wild-type Lpp (LppSK). By replacing serine (S) at position 2 with aspartate (D), the putative inner membrane sorting signal, and by deleting lysine (K) at the C terminus, Lpp mutants with a different residue at either position 2 (LppDK) or the C terminus (LppSR) or both (LppDR) were constructed. Expression of LppSR and LppDR little affected the growth of E. coli. In contrast, the number of viable cells immediately decreased when LppDK was expressed. Prolonged expression of LppDK inhibited separation of the inner and outer membranes by sucrose density gradient centrifugation, whereas short-term expression did not. Pulse-labeled LppDK and LppDR were localized in the inner membrane, indicating that the amino acid residue at position 2 functions as a sorting signal for the membrane localization of Lpp. LppDK accumulated in the inner membrane covalently associated with the peptidoglycan and thus prevented the separation of the two membranes. Globomycin, an inhibitor of lipoprotein-specific signal peptidase II, was lethal for E. coli only when Lpp possessed the C-terminal lysine. Taken together, these results indicate that the inner membrane accumulation of Lpp per se is not lethal for E. coli. Instead, a covalent linkage between the inner membrane Lpp having the C-terminal lysine and the peptidoglycan is lethal for E. coli, presumably due to the disruption of the cell surface integrity.  相似文献   

7.
We have compared the properties of phospholipase A (E.C. 3.1.1.4) activity in whole human and rabbit serum toward the phospholipids of Escherichia coli. Using as substrate E. coli labeled during growth with either [1-(14)C]-palmitic acid or [1-(14)C]oleic acid, and then autoclaved to inactivate E. coli phospholipases and to render the labeled phospholipids accessible to exogenous phospholipases, we show that the deacylating activity in both human and rabbit serum is almost exclusively of the A(2) type. Rabbit serum is at least 20-fold more active than human serum. Activity in both sera is maximal at physiological Ca(2+) concentrations (2 mM) and is abolished by ethylenediaminetetraacetic acid. To examine hydrolysis of intact (unautoclaved) E. coli treated with 25% serum, use was made of a phospholipase A-deficient E. coli strain (E. coli S17), thereby eliminating the possible contribution of bacterial phospholipases to degradation. Human and rabbit serum are about equally bactericidal toward E. coli and cause comparable structural damage. However, only rabbit serum produces substantial hydrolysis of the phospholipids of intact E. coli S17. Heated (56 degrees C, 30 min) rabbit serum is non-bactericidal and retains phospholipase A(2) activity toward autoclaved, but not intact E. coli. The ability of heated serum to degrade phospholipids of intact E. coli S17 is restored, however, by adding 25% normal human serum, which is bactericidal. In this combination, doses of heated rabbit serum containing as much phospholipase A(2) activity (toward autoclaved E. coli) as is present in 25% unheated rabbit serum, produce roughly the same extent of hydrolysis of intact E. coli as does normal rabbit serum alone. Low doses with a phospholipase A(2) activity comparable to that of normal human serum elicit little or no hydrolysis. These findings indicate that hydrolysis of the phospholipids of intact E. coli S17 by serum occurs when: 1) the serum is bactericidal, and 2) when sufficient phospholipase A(2) is present. The difference in phospholipid hydrolysis that accompanies killing of E. coli by human or rabbit serum appears to reflect, therefore, the different amounts of phospholipase A(2) activity in the two sera. Phospholipid degradation is not required for the bactericidal action of serum. Bacterial phospholipid breakdown may be important, however, in the overall destruction and digestion of invading bacteria by the host.-Kaplan-Harris, L., J. Weiss, C. Mooney, S. Beckerdite-Quagliata, and P. Elsbach. The action of human and rabbit serum phospholipase A(2) on Escherichia coli phospholipids.  相似文献   

8.
Ten E. coli K1 strains isolated from the urine of children with urinary tract infections were sensitive to the bactericidal action of normal human serum (NHS). The role of the particular mechanisms of complement activation was determined in the process of killing these strains, showing variable sensitivity to the bactericidal action of NHS; three mechanisms of activation of human complement were observed. Important role of alternative pathway activation in the bactericidal action of NHS against E. coli K1 strains independent of the classical and lectin pathways was not established.  相似文献   

9.
This investigation was undertaken to select antigenic variants of a Borrelia burgdorferi strain in vitro. The original strain BITS was cultivated in BSK medium supplemented with increasing concentrations of homologous hyperimmune serum raised in rabbits. After a few serial passages starting from a subinhibitory serum dilution of 1:800 in BSK up to 1:200, a variant named BITSv was obtained; it grew abundantly like the control culture in the presence of hyperimmune serum. Analysis of the antigenic pattern of the original and derived variants by Western blotting revealed that BITSv, compared to the original strain BITS, had lost the reactivity with the immune serum at the level of the oligosaccharide moiety. These experiments, designed to mimic the possible action of antibodies that arise during a Borrelia infection, suggest that lipopolysaccharides are surface located and that they play a role in the integrity of the outer membrane during the multiplication of Borrelia burgdorferi.  相似文献   

10.
E. coli strain SA 189 has been isolated from a calf with E. coli infection. The cultivation of this strain on a solid culture medium has resulted in its dissociation into two variants due to the loss of the capsule by the cells of the initial culture. Both variants of E. coli strain SA 189 (capsular and acapsular) are equally sensitive to antibiotics. The capsular variant has a narrower range of sensitivity of colicins and shows greater resistance to the bactericidal action of normal blood serum than the acapsular one. Bacteria belonging to these two variants differ perceptibly in the kinetics of disturbances in the barrier properties of their membrane apparatus under the action of cetyltrimethylammonium bromide, a cation detergent. The conditions permitting the differentiation of the capsular and acapsular forms of E. coli strain SA 189 by the kinetics of the damaging action of this detergent have been experimentally selected.  相似文献   

11.
Abstract Treatment of Escherichia coli cells with polymyxin B nonapeptide (PMBN) makes them susceptible to valinomycin and A23187 action. The sensitivity of the cells towards these ionophores is enhanced at least 50- or 100-fold, respectively. PMBN/ionophore treatment should make it possible to influence intracellular potassium (K) and magnesium (Mg) concentrations of E. coli in vivo.  相似文献   

12.
Susceptibility of some Gram-negative strains against the bactericidal action of normal human serum (NHS) and of chlorophyll, which induces production of reactive oxygen species by light, was studied. A synergistic bactericidal activity of NHS and chlorophyll against E. coli K1 and Shigella flexneri strains was observed.  相似文献   

13.
Escherichia coli B/SM, strain 1-1, was killed dose dependently by human hereditary C9-deficient serum (C9DHS), which was shown to contain no C9 Ag by an ELISA method. On the other hand, human hereditary C7-deficient serum did not kill the bacteria under similar conditions. The bactericidal activity of C9DHS was inhibited by rabbit anti-C5 antibody but not by murine anti-C9 mAb. The anti-C9 antibody decreased the bactericidal activity of normal human serum (NHS) to the level of that with C9DHS. Sheep anti-human lysozyme antibody did not affect the bactericidal activity of C9DHS or NHS even when added at more than twice the concentration required to block the serum lysozyme activity on Micrococcus luteus. After treatment with C9DHS and washing, surviving Escherichia coli were killed by C9, but not by lysozyme, transferrin, or both. Other strains of E. coli (K12 W3110, C600, and NIHJ) and Salmonella typhimurium (strain NCTC 74), all maintained in the laboratory, were also killed by C9DHS. However, pathogenic strains recently isolated from patients with traveler's diarrhea and some strains of S. typhimurium were resistant to both C9DHS and NHS, at least at the serum concentration tested. A concentration of 0.1 M Tris did not increase the susceptibility of serum-resistant strains of bacteria to C9DHS, but made one strain of S. typhimurium tested susceptible to NHS, but not to C9DHS. These results clearly showed that C9DHS kills bacteria that are sensitive to NHS through activation of C up to the step of C8 in the same way that C9-deficient C serum lyzed sensitized erythrocytes.  相似文献   

14.
Chlorambucil (CLB; N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid) and its biologically active beta-oxidation product phenylacetic acid mustard (PAM; N,N-bis(2-chloroethyl)-p-aminophenylacetic acid) are bifunctional aromatic alkylators. CLB is in wide clinical use as an anticancer drug and also as an immunosuppressant. The chemical structures indicate that CLB and PAM are mutagenic, teratogenic and carcinogenic, but the mode of action has remained obscure. We have investigated the biological effects of CLB and PAM with DNA repair-deficient Escherichia coli strains. In contrast to MNNG (N-methyl-N'-nitro-N-nitrosoguanine), CLB and PAM were not toxic to E. coli, but permeabilization of the outer membrane of the cells through use of polymyxin B nonapeptide (PMBN) rendered them susceptible to these compounds. The importance of DNA repair, shown by reversal of damage and attenuation of the toxicity of CLB and PAM, was indicated by the susceptibility of cells lacking O(6)-methylguanine-DNA methyltransferase I and II (ada ogt). Similarly, the protective role of base excision repair (BER) was substantiated by demonstration of an even more increased susceptibility to CLB and PAM of cells lacking 3-methyladenine-DNA glycosylase I and II (alkA1 tag-1). Cells deficient in mismatch repair (mutS) appeared to be slightly more sensitive than normal cells to CLB and PAM, although no such sensitivity to MNNG was observed. This implicates the role of mismatches in CLB- and PAM-related cytotoxicity. It is generally believed that bifunctional alkylating agents, like CLB and PAM, exert their cytotoxic action via DNA cross-linking. Our results with O(6)-methyltransferase- and 3-methyladenine-DNA glycosylase-deficient cells indicate that removal of the adducts prior to the formation of cross-links is an important mechanism maintaining cell viability. We conclude that PMBN permeabilization provides a valuable tool to investigate genetically engineered E. coli cells, whose outer membrane is not naturally permeable to mutagens or other interesting compounds.  相似文献   

15.
Tsubery H  Ofek I  Cohen S  Fridkin M 《Peptides》2001,22(10):1675-1681
Polymyxin B (PMB) is a potent antibacterial lipopeptide composed of a positively charged cyclic peptide ring and a fatty acid containing tail. Polymyxin B nonapeptide (PMBN), the deacylated amino derivative of polymyxin B, is much less bactericidal but able to permeabilize the outer membrane of Gram-negative bacteria and to neutralize the toxic effects of lipopolysaccharide (LPS). In this study, we synthesized and evaluated the antibacterial and LPS neutralizing activities of four PMBN analogs modified at their N-terminal. Our results suggest that oligoalanyl substitutions of PMBN do not effect most of PMBN activities. However, a hydrophobic aromatic substitution generated a PMB-like molecule with high antibacterial activity and significant reduced toxicity.  相似文献   

16.
The outer membrane protein A (OmpA) of Gram-negative bacteria has been ascribed multiple functions including maintenance of structural membrane integrity and porin activity. OmpA has also been implicated in various host defense processes in that it contributes to bacterial serum resistance and activates certain immune cells. Recently, OmpA was shown to be the molecular target for neutrophil elastase (NE), and Escherichia coli mutants lacking OmpA were resistant to the bactericidal effects of NE. In addition to NE, neutrophils use a variety of other antibacterial effector molecules such as oxygen radicals and bactericidal peptides or proteins. The aim of this study was to investigate the role of E. coli OmpA regarding susceptibility to other neutrophil-derived defense systems. We found that OmpA-deficient (OmpA(-)), but not wild-type isogenic, E. coli activated human neutrophils to produce oxygen radicals intracellularly. This activation was found to require an intact neutrophil cytoskeleton but was independent of bacterial phagocytosis. Furthermore, we found that the OmpA(-) strain was more susceptible to membrane-acting bactericidal peptides than the wild-type strain, although the susceptibility to different oxygen radicals was independent of the presence of OmpA. Taken together, these data suggest an important role for OmpA in the context of bacteria vs. host interactions.  相似文献   

17.
目的: 利用表达载体pLLP-OmpA实现大肠杆菌K12外膜蛋白OmpW在外膜上高表达。方法: PCR扩增ompW基因,构建重组表达载体pLLP-OmpA-ompW,然后转化大肠杆菌K12,得到在外膜上高表达的菌株。提取该菌外膜蛋白,利用免疫小鼠制备得到的抗血清进行Western blot分析验证高表达的OmpW是否定位于外膜。结果: 成功构建了重组表达载体,经转化后成功筛选到高表达菌株,并经Western blot证实高表达的OmpW定位在外膜上。结论: 首次成功获得OmpW在外膜上的高表达,该高表达菌株可为深入研究OmpW在细菌致病机制中的作用及其它功能提供研究基础。  相似文献   

18.
The gene determining the structure of a major outer membrane protein of Escherichia coli, protein Ia, has been located between serC and pyrD, at the min 21 region of the linkage map. This is based on the isolation and characterization of E. coli-Salmonella typhimurium intergeneric hybrids as well as analyses of a mutation (ompF2) affecting the formation of protein Ia. When the serC region of the S. typhimurium chromosome was transduced by phage P1 into E. coli, two classes of transductants were obtained; one produced protein Ia like the parental strain of E. coli, whereas the other produced not protein Ia but a pair of outer membrane proteins structurally related to 35K protein, one of the major outer membrane proteins of S. typhimurium. Furthermore, a strain of S. typhimurium harboring an F' plasmid which carries the ompF region of the E. coli chromosome was found to produce a protein indistinguishable from protein Ia, beside the outer membrane proteins characteristic to the parental Salmonella strain. These results suggest that the structural genes for protein Ia (E. coli) and for 35K protein (S. typhimurium) are homologous to each other and are located at the ompF region of the respective chromosome. The bearing of these findings on the genetic control of protein Ia formation is discussed.  相似文献   

19.
The function of OmpA in Escherichia coli   总被引:3,自引:0,他引:3  
Outer membrane protein A (OmpA) is a major protein in the Escherichia coli outer membrane. In this study, the function of OmpA in E. coli stress survival was examined. An E. coli K1 ompA-deletion mutant was significantly more sensitive than that of its parent strain to sodium dodecyl sulfate (SDS), cholate, acidic environment, high osmolarity, and pooled human serum. A number of amino acid changes at the extracellular loops of OmpA did not affect the viability of E. coli, while short peptide insertions in the periplasmic turns of the OmpA beta-barrel decreased E. coli resistance to environmental stresses. Moreover, ompA mutants were found to survive much better within brain microvascular endothelial cells than the wild-type strain, supporting that OmpA is a major target in mammalian host cell defense. These results indicated that OmpA plays a vital structural role in E. coli, and suggested that a perfect beta-barrel structure of OmpA is important for outer membrane stability. Based on these results and the published OmpA structural analyses, I propose that OmpA is composed of three functional domains including a hydrophilic extracellular mass, a beta-barrel transmembrane structure, and a peptidoglycan binding domain.  相似文献   

20.
Escherichia coli fimbriae recognizing sialyl galactosides   总被引:48,自引:7,他引:41  
Fimbriae recognizing sialyl galactosides (S fimbriae) were purified from an Escherichia coli strain. The S fimbriae were morphologically identical to type 1 and P fimbriae of E. coli and showed a hemagglutination that was abolished when erythrocytes were treated with neuraminidase. Hemagglutination by the purified fimbriae was inhibited by orosomucoid but not by its desialylated derivative. Of the oligosaccharides tested, sialyl-(alpha 2-3)-lactose and sialyl-(alpha 2-3)-N-acetyllactosamine had the strongest inhibitory activities. It was concluded that S fimbriae have the strongest affinity for (alpha 2-3)-linked sialyl galactosides. In the enzyme-linked immunosorbent assay, the hyperimmune serum to the S fimbriae reacted strongly with the homologous antigen but not with type 1, P, or nonhemagglutinating KS71C fimbriae of E. coli. Analogously, the hyperimmune sera to the other E. coli fimbriae did not react with the purified S fimbriae. The immunoprecipitation assay showed that S fimbriae on different E. coli serotypes shared immunological cross-reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号