首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vince JW  Carlsson U  Reithmeier RA 《Biochemistry》2000,39(44):13344-13349
Human carbonic anhydrase II (CAII) possesses a binding site for an acidic motif (D887ADD) within the carboxyl-terminal region (Ct) of the human erythrocyte chloride/bicarbonate anion exchanger, AE1. In this study, the amino acid sequence comprising this AE1 binding site was localized to the first 17 residues of CAII, which form a basic patch on the surface of the protein. Truncation of the amino terminal of CAII by five residues resulted in a 3-fold reduction in the apparent affinity of the interaction with a GST fusion protein of the Ct of AE1 (GST-Ct) measured by a sensitive microtiter plate binding assay. Further amino-terminal truncation of CAII by 17 or 24 residues caused a loss of binding. The homologous isoform CAI does not bind AE1, despite having 60% sequence identity to CAII. One major difference between the two CA isoforms, within the amino-terminal region, is a high content of histidine residues in CAII (His3, -4, -10, -15, -17) not found in CAI. Mutation of pairs of these histidines (and one lysine) in CAII to the analogous residues in CAI (H3P/H4D or K9D/H10K or H15Q/H17S), or combinations of these various double mutants, did not greatly affect binding between GST-Ct and the mutant CAII. However, when all six of the targeted CAII residues were mutated to the corresponding sequence in CAI, binding of GST-Ct was lost. These results indicate that the AE1 binding site is located within the first 17 residues of CAII, and that the interaction is mediated by electrostatic interactions involving histidine and/or lysine residues. Further specificity for the interaction of AE1 and CAII is provided by a conserved leucine residue (L886) in AE1 that, when mutated to alanine, resulted in loss of GST-Ct binding to immobilized CAII. The binding of the basic amino-terminal region of CAII to an acidic Ct in AE1 provides a structural basis for linking bicarbonate transport across the cell membrane to intracellular bicarbonate metabolism.  相似文献   

2.
The cytoplasmic carboxyl-terminal domain of AE1, the plasma membrane chloride/bicarbonate exchanger of erythrocytes, contains a binding site for carbonic anhydrase II (CAII). To examine the physiological role of the AE1/CAII interaction, anion exchange activity of transfected HEK293 cells was monitored by following the changes in intracellular pH associated with AE1-mediated bicarbonate transport. AE1-mediated chloride/bicarbonate exchange was reduced 50-60% by inhibition of endogenous carbonic anhydrase with acetazolamide, which indicates that CAII activity is required for full anion transport activity. AE1 mutants, unable to bind CAII, had significantly lower transport activity than wild-type AE1 (10% of wild-type activity), suggesting that a direct interaction was required. To determine the effect of displacement of endogenous wild-type CAII from its binding site on AE1, AE1-transfected HEK293 cells were co-transfected with cDNA for a functionally inactive CAII mutant, V143Y. AE1 activity was maximally inhibited 61 +/- 4% in the presence of V143Y CAII. A similar effect of V143Y CAII was found for AE2 and AE3cardiac anion exchanger isoforms. We conclude that the binding of CAII to the AE1 carboxyl-terminus potentiates anion transport activity and allows for maximal transport. The interaction of CAII with AE1 forms a transport metabolon, a membrane protein complex involved in regulation of bicarbonate metabolism and transport.  相似文献   

3.
Anion exchanger 1 (AE1) is the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes. Carbonic anhydrases (CA) provide substrate for AE1 by catalyzing the reaction, H(2)O + CO(2) ? HCO(3)(-) + H(+). The physical complex of CAII with AE1 has been proposed to maximize anion exchange activity. To examine the effect of CAII catalysis on AE1 transport rate, we fused either CAII-wild type or catalytically inactive CAII-V143Y to the cytoplasmic COOH terminus of AE1 to form AE1.CAII and AE1.CAII-V143Y, respectively. When expressed in transfected human embryonic kidney 293 cells, AE1.CAII had a similar Cl(-)/HCO(3)(-) exchange activity to AE1 alone, as assessed by the flux of H(+) equivalents (87 ± 4% vs. AE1) or rate of change of intracellular Cl(-) concentration (93 ± 4% vs. AE1), suggesting that CAII does not activate AE1. In contrast, AE1.CAII-V143Y displayed transport rates for H(+) equivalents and Cl(-) of 55 ± 2% and of 40 ± 2%, versus AE1. Fusion of CAII to AE1 therefore reduces anion transport activity, but this reduction is compensated for during Cl(-)/HCO(3)(-) exchange by the presence of catalytically active CAII. Overexpression of free CAII-V143Y acts in a dominant negative manner to reduce AE1-mediated HCO(3)(-) transport by displacement of endogenous CAII-wild type from its binding site on AE1. To examine whether AE1.CAII bound endogenous CAII, we coexpressed CAII-V143Y along with AE1 or AE1.CAII. The bicarbonate transport activity of AE1 was inhibited by CAII-V143Y, whereas the activity of AE1.CAII was unaffected by CAII-V143Y, suggesting impaired transport activity upon displacement of functional CAII from AE1 but not AE1.CAII. Taken together, these data suggest that association of functional CAII with AE1 increases Cl(-)/HCO(3)(-) exchange activity, consistent with the HCO(3)(-) transport metabolon model.  相似文献   

4.
Mapping the ankyrin-binding site of the human erythrocyte anion exchanger   总被引:9,自引:0,他引:9  
This report describes initial efforts to map the ankyrin-binding site of the cytoplasmic domain of the human erythrocyte anion exchanger. The conclusions are that this site is likely to involve a fairly extended sequence in the midregion of the cytoplasmic domain and requires interactions that are not provided by isolated peptides. The region of the sequence involving residues 174-186 is likely to participate in the ankyrin-binding site based on several experiments. Limited tryptic cleavage in the midregion of the cytoplasmic domain (residues 174 and/or 181) nearly abolished the ability of the cytoplasmic domain to inhibit binding of ankyrin to the anion exchanger. Ankyrin protected the cytoplasmic domain from tryptic digestion. Finally, peptide-specific antibodies against the sequence encompassing the site(s) of tryptic cleavage (residues 174-186) blocked binding of ankyrin to the anion exchanger. However, the sequence comprising the tryptic site is not sufficient for high affinity binding of ankyrin. A 39-amino acid peptide (residues 161-200) that includes the tryptic cleavage site(s) was inactive in inhibiting binding of ankyrin to the anion exchanger. Further evidence for a complex ankyrin-binding site is that peptide-specific antibodies against two different, noncontiguous regions (residues 118-162 and 174-186) both inhibited binding of ankyrin to the anion exchanger and were only 10-20% as effective as antibody against the entire cytoplasmic domain. Finally, the ankyrin-binding site of the anion exchanger did not renature following sodium dodecyl sulfate electrophoresis and transfer to nitrocellulose paper even though spectrin did recover ability to bind ankyrin under the same conditions. Thus, the ankyrin-binding site is not defined by a short continuous sequence. A simple consensus sequence for ankyrin-binding regions in other proteins is not likely.  相似文献   

5.
Erythrocyte ankyrin contains an 89-kDa domain (residues 2-827) comprised almost entirely of 22 tandem repeats of 33 amino acids which are responsible for the high affinity interaction of ankyrin with the anion exchanger (Davis, L., and Bennett, V. (1990) J. Biol. Chem. 265, 10589-10596). The question of whether the repeats are equivalent with respect to binding to the anion exchanger was addressed using defined regions of erythrocyte and brain ankyrins expressed in bacteria. The conclusion is that the repeats are not interchangeable and that the 44 residues from 722 to 765 are essential for high affinity binding between erythrocyte ankyrin and the anion exchanger. Residues 348-765 were active whereas a polypeptide of the same size (residues 305-721) but missing the 44 residues was not active. The difference between the active and inactive polypeptides was not caused by the degree of folding based on circular dichroism spectra. The 44 residues from 722 to 765 were not sufficient for binding since deletions of residues from 348 to 568 resulted in a 10-fold loss of activity. However, the role of residues 348-568 may be at the level of folding rather than a direct contact since the deleted sequences were not active in the absence of 722-765 and since circular dichroism spectra revealed significant loss of structure in the smaller polypeptides. Further evidence that the 33-residue repeats are not equivalent in ability to bind to the anion exchanger is that a region of human brain ankyrin containing 18 33-residue repeats with 67% overall sequence identity to erythrocyte ankyrin was 8-fold less active than a region of erythrocyte ankyrin containing only 12 repeats. The fact that the anion exchanger binds to certain repeats suggests that the other 33-amino acid repeats could interact with proteins distinct from the anion exchanger and provide ankyrin with the potential for considerable diversity in association with membrane proteins as well as cytoplasmic proteins. Tubulin was identified as one example of a protein that can interact with ankyrin repeats that are not recognized by the anion exchanger.  相似文献   

6.
To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane Cl- /HCO3(-) anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 HCO3(-) transport activity, as AE1 moves bicarbonate either into or out of the cell. In efflux mode the presence of CAII attached to AE1 will increase the local concentration of bicarbonate at the AE1 transport site. As bicarbonate is transported into the cell by AE1, the presence of CAII on the cytosolic surface accelerates transport by consumption of bicarbonate, thereby maximizing the transmembrane bicarbonate concentration gradient experienced by the AE1 molecule. Functional and physical interactions also occur between CAII and Na+/HCO3(-) co-transporter isoforms NBC1 and NBC3. All examined bicarbonate transport proteins, except the DRA (SLC26A3) Cl-/HCO3(-) exchange protein, have a consensus CAII binding site in their cytoplasmic C-terminus. Interestingly, CAII does not bind DRA. CAIV is anchored to the extracellular surface of cells via a glycosylphosphatidyl inositol linkage. We have identified extracellular regions of AE1 and NBC1 that directly interact with CAIV, to form a physical complex between the proteins. In summary, bicarbonate transporters directly interact with the CAII and CAIV carbonic anhydrases to increase the transmembrane bicarbonate flux. The complex of a bicarbonate transporter with carbonic anhydrase forms a "Bicarbonate Transport Metabolon."  相似文献   

7.
The human anion exchanger 1 (AE1) is the most abundant integral membrane protein in red cells and is responsible for the exchange of Cl(-) for HCO(3)(-). However, the detailed role played by the AE1 C-terminal region in the anion translocation and membrane trafficking process remains unclear. In this paper, we created four mutants in the human AE1 C-terminus by deletion of the residues Ala(891)-Phe(895), Asp(896)-Glu(899), Asp(902)-Glu(906) and Val(907)-Val(911), to investigate the role of these sequences in functional expression of AE1. WT AE1 and its deletion mutant constructs were expressed in HEK 293 cells. Western blotting showed that deletions of Ala(891)-Phe(895), Asp(896)-Glu(899), and Val(907)-Val(911) induced high expression of AE1, whereas loss of Asp(902)-Glu(906) results in stable low expression. Pulse chase assays of WT AE1 and its mutants showed that the stability of protein is unaffected by the levels of expression of the AE1 and its mutants. Ala(891)-Phe(895), Asp(902)-Glu(906) and Val(907)-Val(911) mutants exhibited lower levels of trafficking to the plasma membrane compared with WT AE1, while the Asp(896)-Glu(899) mutant was more highly expressed at the plasma membrane. The decreased ability of the mutants to mediate Cl(-)/HCO(3)(-) exchange in transfected cells revealed that the deletion sequences have an important role in transport activity. These results demonstrate that the studied residues in the AE1 C-terminus differently affect the expression, membrane trafficking and functional folding of AE1.  相似文献   

8.
Mini Review     
To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane [Formula: See Text] anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 [Formula: See Text] transport activity, as AE1 moves bicarbonate either into or out of the cell. In efflux mode the presence of CAII attached to AE1 will increase the local concentration of bicarbonate at the AE1 transport site. As bicarbonate is transported into the cell by AE1, the presence of CAII on the cytosolic surface accelerates transport by consumption of bicarbonate, thereby maximizing the transmembrane bicarbonate concentration gradient experienced by the AE1 molecule. Functional and physical interactions also occur between CAII and [Formula: See Text] co-transporter isoforms NBC1 and NBC3. All examined bicarbonate transport proteins, except the DRA (SLC26A3) [Formula: See Text] exchange protein, have a consensus CAII binding site in their cytoplasmic C-terminus. Interestingly, CAII does not bind DRA. CAIV is anchored to the extracellular surface of cells via a glycosylphosphatidyl inositol linkage. We have identified extracellular regions of AE1 and NBC1 that directly interact with CAIV, to form a physical complex between the proteins. In summary, bicarbonate transporters directly interact with the CAII and CAIV carbonic anhydrases to increase the transmembrane bicarbonate flux. The complex of a bicarbonate transporter with carbonic anhydrase forms a "Bicarbonate Transport Metabolon."  相似文献   

9.
A novel relationship between branchial carbonic anhydrase II (CAII) and anion exchanger 1 (AE1) was investigated in the euryhaline spotted green pufferfish (Tetraodon nigroviridis). The immunoblots revealed that AE1 was only detected in the membrane fraction of gills while CAII can be probed both in the membrane and cytosol fractions of gills. CAII protein abundance in the membrane fraction is salinity dependent. Immunological detection of the membrane fraction CAII protein in gills showed 3.9-fold higher in the hyposmotic (freshwater) group than the hyperosmotic (seawater;35 per thousand) group. In contrast, there was no change in the protein level of cytosolic CAII between seawater and freshwater groups. The whole-mount immunocytochemical staining demonstrated that both AE1 and CAII were colocalized to the Na(+)/K(+)-ATPase-immunoreactive cells in gill epithelium of the pufferfish. The interaction between CAII and AE1 was further identified by co-immunoprecipitation because AE1 was detected in the immunoprecipitates of CAII and vice versa. Our results showed that in pufferfish gills CAII was not only expressed in the cytosol to produce the substrate for AE1 transport during Cl(-) influx but also associated with the plasma membrane via AE1. Obviously, it is essential for the physiological function of AE1 to interact with CAII in the membrane of gill Na(+)/K(+)-ATPase-immunoreactive cells. To our knowledge, this is the first study to demonstrate the interaction of branchial CAII and AE1 in fish. The novel correlation proposed a new model of Cl(-)/HCO(3) (-) transport in gills of the teleosts.  相似文献   

10.
Pang AJ  Bustos SP  Reithmeier RA 《Biochemistry》2008,47(15):4510-4517
Kidney anion exchanger 1 (kAE1) is a membrane glycoprotein expressed in alpha-intercalated cells in the collecting ducts of the kidney where it mediates electroneutral chloride/bicarbonate exchange. Human kAE1 is a truncated form of erythroid AE1 missing the first 65 residues of the N-terminal cytosolic domain, which includes a disordered acidic region (residues 1-54) and the first beta-strand (residues 55-65) of the folded region. Unlike erythroid AE1, kAE1 does not bind deoxyhemoglobin, glycolytic enzymes, or cytoskeletal components. To understand the effect of the N-terminal deletion on the structure of the cytosolic domain, we performed an extensive biophysical analysis on His 6 tagged cytosolic domains of erythroid AE1 (cdAE1), kidney AE1 (cdkAE1), and a novel truncation mutant (cdDelta54AE1) missing the first 54 residues, but retaining the beta-strand. Circular dichroism did not detect any major differences in secondary structure, and sedimentation analyses showed that all three proteins were dimeric. Differential scanning calorimetry revealed that cdAE1 and cdDelta54AE1 had similar thermal stabilities with midpoints of transition higher than cdkAE1. cdAE1 and cdDelta54AE1 underwent similar pH-dependent fluorescence changes, while cdkAE1 exhibited a higher intrinsic fluorescence at neutral and acidic pH. Urea denaturation resulted in dequenching of tryptophan fluorescence in cdAE1, while tryptophans in cdkAE1 were already dequenched in the native state. We conclude that the absence of the central beta-strand in cdkAE1 results in a less stable and more open structure than cdAE1. This structural change, in addition to the loss of the acidic amino-terminal region, may account for the altered protein binding properties of kAE1.  相似文献   

11.
Li X  Liu Y  Alvarez BV  Casey JR  Fliegel L 《Biochemistry》2006,45(7):2414-2424
Carbonic anhydrase II (CAII) binds to and regulates transport by the NHE1 isoform of the mammalian Na(+)/H(+) exchanger. We localized and characterized the CAII binding region on the C-terminal tail of the Na(+)/H(+) exchanger. CAII did not bind to acidic sequences in NHE1 that were similar to the CAII binding site of bicarbonate transporters. Instead, by expressing a variety of fusion proteins of the C-terminal region of the Na(+)/H(+) exchanger, we demonstrated that CAII binds to the penultimate group of 13 amino acids of the cytoplasmic tail. Within this region, site-specific mutagenesis demonstrated that amino acids S796 and D797 form part of a novel CAII binding site. Phosphorylation of the C-terminal 26 amino acids by heart cell extracts did not alter CAII binding to this region, but phosphorylation greatly increased CAII binding to a protein containing the C-terminal 182 amino acids of NHE1. This suggested that an upstream region of the cytoplasmic tail acts as an inhibitor of CAII binding to the penultimate group of 13 amino acids. The results demonstrate that a novel phosphorylation-regulated CAII binding site exists in distal amino acids of the NHE1 tail.  相似文献   

12.
COOH-terminal cytoplasmic tails ofchloride/bicarbonate anion exchangers (AE) bind cytosolic carbonicanhydrase II (CAII) to form a bicarbonate transport metabolon, amembrane protein complex that accelerates transmembrane bicarbonateflux. To determine whether interaction with CAII affects thedownregulated in adenoma (DRA) chloride/bicarbonate exchanger, anionexchange activity of DRA-transfected HEK-293 cells was monitored byfollowing changes in intracellular pH associated with bicarbonatetransport. DRA-mediated bicarbonate transport activity of 18 ± 1 mM H+ equivalents/min was inhibited 53 ± 2% by 100 mM of the CAII inhibitor, acetazolamide, but was unaffected by themembrane-impermeant carbonic anhydrase inhibitor,1-[5-sulfamoyl-1,3,4-thiadiazol-2-yl-(aminosulfonyl-4-phenyl)]-2,6-dimethyl-4-phenyl-pyridinium perchlorate. Compared with AE1, the COOH-terminal tail of DRA interacted weakly with CAII. Overexpression of a functionally inactiveCAII mutant, V143Y, reduced AE1 transport activity by 61 ± 4%without effect on DRA transport activity (105 ± 7% transport activity relative to DRA alone). We conclude that cytosolic CAII isrequired for full DRA-mediated bicarbonate transport. However, DRAdiffers from other bicarbonate transport proteins because its transportactivity is not stimulated by direct interaction with CAII.

  相似文献   

13.
This report describes initial characterization of the binding sites of ankyrin for spectrin and the anion exchanger using defined subfragments isolated from purified ankyrin domains. The spectrin-binding domain of ankyrin is comprised of two subdomains: an acidic, proline-rich region (pI = 4) involving the amino-terminal 80 residues from 828 to 908 and a basic region (pI = 8.8) that extends from 898 to 1386. The amino-terminal 70 amino acids of the spectrin-binding domain are critical for association with spectrin, since a subfragment missing this region is only 5% as active as the intact domain in displacing binding of spectrin to inside-out membrane vesicles, while deletion of the first 38 residues of the acidic domain results in a 10-fold reduction in activity. The anion exchanger-binding site is confined to an 89-kDa domain that was isolated and characterized as a globular molecule with approximately 30% alpha-helical configuration. A subfragment of the 89-kDa domain extending from residues 403 to 779 (or possibly 740) retains ability to associate with the anion exchanger. The 89-kDa domain is comprised of a series of tandem repeats of 33 amino acids that extend from residues 35 to 778 (Lux, S., John, K., and Bennett, V. (1990) Nature 344, 36-42). The activity of residues 403-779 demonstrates that the 33-amino acid repeats of the 89-kDa domain are responsible for association between ankyrin and the anion exchanger. The 33-amino acid repeating sequence of ankyrin represents an ancient motif also found in proteins of Drosophila, yeast, and Caenor habditis elegans. The finding that the 33-amino acid repeating sequence is involved in interaction with the anion exchanger implies that this motif may perform a role in molecular recognition in diverse proteins.  相似文献   

14.
X B Tang  J R Casey 《Biochemistry》1999,38(44):14565-14572
AE1, the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane, is highly sensitive to inhibition by stilbene disulfonate compounds such as DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonate) and DNDS (4,4'-dinitrostilbene-2,2'-disulfonate). Stilbene disulfonates recruit the anion binding site to an outward-facing conformation. We sought to identify the regions of AE1 that undergo conformational changes upon noncovalent binding of DNDS. Since conformational changes induced by stilbene disulfonate binding cause anion transport inhibition, identification of the DNDS binding regions may localize the substrate binding region of the protein. Cysteine residues were introduced into 27 sites in the extracellular loop regions of an otherwise cysteineless form of AE1, called AE1C(-). The ability to label these residues with biotin maleimide [3-(N-maleimidylpropionyl)biocytin] was then measured in the absence and presence of DNDS. DNDS reduced the ability to label residues in the regions around G565, S643-M663, and S731-S742. We interpret these regions either as (i) part of the DNDS binding site or (ii) distal to the binding site but undergoing a conformational change that sequesters the region from accessibility to biotin maleimide. DNDS alters the conformation of residues outside the plane of the bilayer since the S643-M663 region was previously shown to be extramembranous. Upon binding DNDS, AE1 undergoes conformational changes that can be detected in extracellular loops at least 20 residues away from the hydrophobic core of the lipid bilayer. We conclude that the TM7-10 region of AE1 is central to the stilbene disulfonate and substrate binding region of AE1.  相似文献   

15.
Antibodies specific for the chicken AE1 anion exchanger have been used to determine the cell-type specific pattern of expression of this electroneutral transporter in the chick chorioallantoic membrane (CAM) during embryonic development. Immunolocalisation analyses demonstrated that the AE1 anion exchanger accumulated in the basolateral membrane of a subset of cells in both the chorionic and allantoic epithelial layers. Double immunostaining indicated that the AE1-positive cells in the chorionic and allantoic epithelia were also positive for the carbonic anhydrase isoform, CAII, which serves as a marker for the villus cavity (VC) cells of the chorionic epithelium and the mitochondria-rich cells of the allantoic epithelium. Immunoelectron microscopy revealed that AE1 accumulated in extensive projections that extended from the lateral membrane of VC cells towards the adjacent capillary covering cells. These results represent the first demonstration of anion exchanger expression in the chick CAM, and they suggest a role for basolateral AE1 in bicarbonate reabsorption that is required in the embryo for maintaining acid-base balance during development.  相似文献   

16.
Cl-/HCO3- exchange activity mediated by the AE1 anion exchanger is reduced by carbonic anhydrase II (CA2) inhibition or by prevention of CA2 binding to the AE1 C-terminal cytoplasmic tail. This type of AE1 inhibition is thought to represent reduced metabolic channeling of HCO3- to the intracellular HCO3- binding site of AE1. To test the hypothesis that CA2 binding might itself allosterically activate AE1 in Xenopus oocytes, we compared Cl-/Cl- and Cl-/HCO3- exchange activities of AE1 polypeptides with truncation and missense mutations in the C-terminal tail. The distal renal tubular acidosis-associated AE1 901X mutant exhibited both Cl-/Cl- and Cl-/HCO3- exchange activities. In contrast, AE1 896X, 891X, and AE1 missense mutants in the CA2 binding site were inactive as Cl-/HCO3- exchangers despite exhibiting normal Cl-/Cl- exchange activities. Co-expression of CA2 enhanced wild-type AE1-mediated Cl-/HCO3- exchange, but not Cl-/Cl- exchange. CA2 co-expression could not rescue Cl-/HCO3- exchange activity in AE1 mutants selectively impaired in Cl-/HCO3- exchange. However, co-expression of transport-incompetent AE1 mutants with intact CA2 binding sites completely rescued Cl-/HCO3- exchange by an AE1 missense mutant devoid of CA2 binding, with activity further enhanced by CA2 co-expression. The same transport-incompetent AE1 mutants failed to rescue Cl-/HCO3- exchange by the AE1 truncation mutant 896X, despite preservation of the latter's core CA2 binding site. These data increase the minimal extent of a functionally defined CA2 binding site in AE1. The inter-protomeric rescue of HCO3- transport within the AE1 dimer shows functional proximity of the C-terminal cytoplasmic tail of one protomer to the anion translocation pathway in the adjacent protomer within the AE1 heterodimer. The data strongly support the hypothesis that an intact transbilayer anion translocation pathway is completely contained within an AE1 monomer.  相似文献   

17.
Anion exchanger 1 (AE1) is the chloride/bicarbonate exchange protein of the erythrocyte membrane. By using a combination of introduced cysteine mutants and sulfhydryl-specific chemistry, we have mapped the topology of the human AE1 membrane domain. Twenty-seven single cysteines were introduced throughout the Leu708-Val911 region of human AE1, and these mutants were expressed by transient transfection of human embryonic kidney cells. On the basis of cysteine accessibility to membrane-permeant biotin maleimide and to membrane-impermeant lucifer yellow iodoacetamide, we have proposed a model for the topology of AE1 membrane domain. In this model, AE1 is composed of 13 typical transmembrane segments, and the Asp807-His834 region is membrane-embedded but does not have the usual alpha-helical conformation. To identify amino acids that are important for anion transport, we analyzed the anion exchange activity for all introduced cysteine mutants, using a whole cell fluorescence assay. We found that mutants G714C, S725C, and S731C have very low transport activity, implying that this region has a structurally and/or catalytically important role. We measured the residual anion transport activity after mutant treatment with the membrane-impermeant, cysteine-directed compound, sodium (2-sulfonatoethyl)methanethiosulfonate) (MTSES). Only two mutants, S852C and A858C, were inhibited by MTSES, indicating that these residues may be located in a pore-lining region.  相似文献   

18.
19.
Eleven sequenced anion exchanger (AE; band 3) proteins, including five AE1, four AE2 and two AE3 proteins, comprise the anion exchanger family (AEF) of homologous proteins. Eliminating the rat and rabbit proteins that are nearly Identical to the corresponding mouse proteins, seven dissimilar members of this family were selected for study, divided into N-terminal, central and C-terminal segments (designated segments 0, 1 and 2, respectively) and analysed separately for sequence similarity and phylogenetic relatedness. Segments 0 are variable in length and sequence, are essentially lacking in some of the members of the AEF, and are not demonstrably homologous in other members of the family. All segments 1 and 2 are homologous, but they exhibit widely differing degrees of sequence divergence. Segments 2 are highly conserved in all AEF proteins. Segments 1 of the AE2 and AE3 proteins are as conserved as are segments 2, but segments 1 of the AE1 proteins have diverged from each other and from the AE2 and AE3 segments 1 much more than have segments 2 of these same proteins.

The distributions of various types of amino acid residues in the putative transmembrane helical spanners of the seven dissimilar members of the AEF, based on a modification of the 14-spanner model of Wang et al. (1994) was determined, and this distribution was compared with those of other transmembrane transport proteins of known structure (bacterial rhodopsins, outer membrane porins of Gram-negative bacteria and bacterial photosynthetic reaction centres). Anion exchangers exhibit a predominance of aromatic residues (F, W, Y) at the ends of the putative spanners and of aliphatic residues (L, I, V, M) in the centres of these spanners. This feature was also a characteristic of bacteriorhodopsins (of λ- structure) and of bacterial porins (of β-structure) but not of photosynthetic reaction centres (of a-structure). Almost all membrane-embedded charged residues in the AEF proteins occur in odd-numbered spanners, a unique characteristic of anion exchangers.  相似文献   

20.
Cytosolic carbonic anhydrase II (CAII) and the cytoplasmic C-terminal tails of chloride/bicarbonate anion exchange (AE) proteins associate to form a bicarbonate transport metabolon, which maximizes the bicarbonate transport rate. To determine whether cell surface-anchored carbonic anhydrase IV (CAIV) interacts with AE proteins to accelerate the bicarbonate transport rate, AE1-mediated bicarbonate transport was monitored in transfected HEK293 cells. Expression of the inactive CAII V143Y mutant blocked the interaction between endogenous cytosolic CAII and AE1, AE2, and AE3 and inhibited their transport activity (53 +/- 3, 49 +/- 10, and 35 +/- 1% inhibition, respectively). However, in the presence of V143Y CAII, expression of CAIV restored full functional activity to AE1, AE2, and AE3 (AE1, 101 +/- 3; AE2, 85 +/- 5; AE3, 108 +/- 1%). In Triton X-100 extracts of transfected HEK293 cells, resolved by sucrose gradient ultracentrifugation, CAIV recruitment to the position of AE1 suggested a physical interaction between CAIV and AE1. Gel overlay assays showed a specific interaction between CAIV and AE1, AE2, and AE3. Glutathione S-transferase pull-down assays revealed that the interaction between CAIV and AE1 occurs on the large fourth extracellular loop of AE1. We conclude that AE1 and CAIV interact on extracellular loop 4 of AE1, forming the extracellular component of a bicarbonate transport metabolon, which accelerates the rate of AE-mediated bicarbonate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号